Structure-Function Relationship of TCTP

  • Beatriz Xoconostle-Cázares
  • Roberto Ruiz-MedranoEmail author
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 64)


The translationally controlled tumor protein (TCTP) is a small, multifunctional protein found in most, if not all, eukaryotic lineages, involved in a myriad of key regulatory processes. Among these, the control of proliferation and inhibition of cell death, as well as differentiation, are the most important, and it is probable that other responses are derived from the ability of TCTP to influence them in both unicellular and multicellular organisms. In the latter, an additional function for TCTP stems from its capacity to be secreted via a nonclassical pathway and function in a non-cell autonomous (paracrine) manner, thus affecting the responses of neighboring or distant cells to developmental or environmental stimuli (as in the case of serum TCTP/histamine-releasing factor in mammals and phloem TCTP in Arabidopsis). The additional ability to traverse membranes without a requirement for transmembrane receptors adds to its functional flexibility. The long-distance transport of TCTP mRNA and protein in plants via the vascular system supports the notion that an important aspect of TCTP function is its ability to influence the response of neighboring and distant cells to endogenous and exogenous signals in a supracellular manner. The predicted tridimensional structure of TCTPs indicates a high degree of conservation, more than its amino acid sequence similarity could suggest. However, subtle differences in structure could lead to different activities, as evidenced by TCTPs secreted by Plasmodium spp. Similar structural variations in animal and plant TCTPs, likely the result of convergent evolution, could lead to deviations from the canonical function of this group of proteins, which could have an impact from a biomedical and agricultural perspectives.



Work in our laboratory described here was supported by CONACYT grants Nos. 109885 (to BX-C) and 156162 (to RR-M) and SENASICA-2014, 2015, and 2016 (to BX-C). We apologize to colleagues whose results were not included in this work due to space constraints.


  1. Albert V, Hall MN (2015) mTOR signaling in cellular and organismal energetics. Curr Opin Cell Biol 33:55–66. CrossRefPubMedGoogle Scholar
  2. Amson R, Pece S, Marine JC, Di Fiore PP, Telerman A (2013) TPT1/TCTP-regulated pathways in phenotypic reprogramming. Trends Cell Biol 23:37–46.
  3. Amzallag N, Passer BJ, Allanic D, Segura E, Théry C, Goud B, Amson R, Telerman A (2004) TSAP6 facilitates the secretion of translationally controlled tumor protein/histamine-releasing factor via a nonclassical pathway. J Biol Chem 279(44):46104–46112CrossRefPubMedGoogle Scholar
  4. An Q, Ehlers K, Kogel KH, van Bel AJ, Hückelhoven R (2006) Multivesicular compartments proliferate in susceptible and resistant MLA12-barley leaves in response to infection by the biotrophic powdery mildew fungus. New Phytol 172:563–576CrossRefPubMedGoogle Scholar
  5. Bayer-Santos E, Aguilar-Bonavides C, Rodrigues SP, Cordero EM, Marques AF, Varela-Ramirez A, Choi H, Yoshida N, da Silveira JF, Almeida IC (2013) Proteomic analysis of Trypanosoma cruzi secretome: characterization of two populations of extracellular vesicles and soluble proteins. J Proteome Res 12:883–897. CrossRefPubMedGoogle Scholar
  6. Berkowitz O, Jost R, Pollmann S, Masle J (2008) Characterization of TCTP, the translationally controlled tumor protein, from Arabidopsis thaliana. Plant Cell Online 20(12):3430–3447CrossRefGoogle Scholar
  7. Bhisutthibhan J, Philbert MA, Fujioka H, Aikawa M, Meshnick SR (1999) The Plasmodium falciparum translationally controlled tumor protein: subcellular localization and calcium binding. Eur J Cell Biol 78:665–670CrossRefPubMedGoogle Scholar
  8. Bommer UA, Borovjagin AV, Greagg MA, Jeffrey IW, Russell P, Laing KG, Lee M, Clemens MJ (2002) The mRNA of the translationally controlled tumor protein P23/TCTP is a highly structured RNA, which activates the dsRNA-dependent protein kinase PKR. RNA 8:478–496CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bommer UA, Thiele BJ (2004) The translationally controlled tumour protein (TCTP). Int J Biochem Cell Biol 36:379–385CrossRefPubMedGoogle Scholar
  10. Brioudes F, Thierry AM, Chambrier P, Mollereau B, Bendahmane M (2010) Translationally controlled tumor protein is a conserved mitotic growth integrator in animals and plants. Proc Natl Acad Sci U S A 107:16384–16389. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bruckner FP, Xavier ADS, Cascardo RDS, Otoni WC, Zerbini FM, Alfenas-Zerbini P (2017) Translationally controlled tumour protein (TCTP) from tomato and is necessary for successful infection by a potyvirus. Mol Plant Pathol 18(5):672–683CrossRefPubMedGoogle Scholar
  12. Calderón-Pérez B, Xoconostle-Cázares B, Lira-Carmona R, Hernández-Rivas R, Ortega-López J, Ruiz-Medrano R (2014) The Plasmodium falciparum translationally controlled tumor protein (TCTP) is incorporated more efficiently into B cells than its human homologue. PLoS One 9:e85514. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cans C, Passer BJ, Shalak V, Nancy-Portebois V, Crible V, Amzallag N, Allanic D, Tufino R, Argentini M, Moras D, Fiucci G, Goud B, Mirande M, Amson R, Telerman A (2003) Translationally controlled tumor protein acts as a guanine nucleotide dissociation inhibitor on the translation elongation factor eEF1A. Proc Natl Acad Sci U S A 100:13892–13897CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chan TH, Chen L, Liu M, Hu L, Zheng BJ, Poon VK, Huang P, Yuan YF, Huang JD, Yang J, Tsao GS, Guan XY (2012) Translationally controlled tumor protein induces mitotic defects and chromosome missegregation in hepatocellular carcinoma development. Hepatology 55:491–505CrossRefPubMedGoogle Scholar
  15. Chmelar J, Anderson JM, Mu J, Jochim RC, Valenzuela JG, Kopecký J (2008) Insight into the sialome of the castor bean tick, Ixodes ricinus. BMC Genomics 9:233. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Demarta-Gatsi C, Smith L, Thiberge S, Peronet R, Commere PH, Matondo M, Apetoh L, Bruhns P, Ménard R, Mécheri S (2016) Protection against malaria in mice is induced by blood stage-arresting histamine-releasing factor (HRF)-deficient parasites. J Exp Med 213(8):1419–1428CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dobrenel T, Caldana C, Hanson J, Robaglia C, Vincentz M, Veit B, Meyer C (2016) TOR signaling and nutrient sensing. Annu Rev Plant Biol 67:261–285. CrossRefPubMedGoogle Scholar
  18. Feng Z (2010) p53 regulation of the IGF-1/AKT/mTOR pathways and the endosomal compartment. Cold Spring Harb Perspect Biol 2(2):a001057CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gawehns F, Ma L, Bruning O, Houterman PM, Boeren S, Cornelissen BJ, Rep M, Takken FL (2015) The effector repertoire of Fusarium oxysporum determines the tomato xylem proteome composition following infection. Front Plant Sci 6:967. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gnanasekar M, Rao KV, Chen L, Narayanan RB, Geetha M, Scott AL, Ramaswamy K, Kaliraj P (2002) Molecular characterization of a calcium binding translationally controlled tumor protein homologue from the filarial parasites Brugia malayi and Wuchereria bancrofti. Mol Biochem Parasitol 121:107–118CrossRefPubMedGoogle Scholar
  21. Gutiérrez-Galeano DF, Toscano-Morales R, Calderón-Pérez B, Xoconostle-Cázares B, Ruiz-Medrano R (2014) Structural divergence of plant TCTPs. Front Plant Sci 5:361. PubMedPubMedCentralGoogle Scholar
  22. Hafidh S, Potěšil D, Fíla J, Čapková V, Zdráhal Z, Honys D (2016) Quantitative proteomics of the tobacco pollen tube secretome identifies novel pollen tube guidance proteins important for fertilization. Genome Biol 17:81. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hanschen ER, Marriage TN, Ferris PJ, Hamaji T, Toyoda A, Fujiyama A, Neme R, Noguchi H, Minakuchi Y, Suzuki M et al (2016) The Gonium pectorale genome demonstrates co-option of cell cycle regulation during the evolution of multicellularity. Nat Commun 7:11370. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hao S, Yu Q, Yin S, He J, He D, Wang C (2016) Serum translationally controlled tumor protein is involved in rat liver regeneration after hepatectomy. Hepatol Res 46(13):1392–1401CrossRefPubMedGoogle Scholar
  25. Heard JJ, Fong V, Bathaie SZ, Tamanoi F (2014) Recent progress in the study of the Rheb family GTPases. Cell Signal 26:1950–1957. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hewitson JP, Harcus YM, Curwen RS, Dowle AA, Atmadja AK, Ashton PD, Wilson A, Maizels RM (2008) The secretome of the filarial parasite, Brugia malayi: proteomic profile of adult excretory-secretory products. Mol Biochem Parasitol 160:8–21. CrossRefPubMedGoogle Scholar
  27. Hinojosa-Moya J, Xoconostle-Cázares B, Piedra-Ibarra E, Méndez-Tenorio A, Lucas WJ, Ruiz-Medrano R (2008) Phylogenetic and structural analysis of translationally controlled tumor proteins. J Mol Evol 66:472–483. CrossRefPubMedGoogle Scholar
  28. Hoepflinger MC, Reitsamer J, Geretschlaeger AM, Mehlmer N, Tenhaken R (2013) The effect of translationally controlled tumour protein (TCTP) on programmed cell death in plants. BMC Plant Biol 13:135. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hsu YC, Chern JJ, Cai Y, Liu M, Choi KW (2007) Drosophila TCTP is essential for growth and proliferation through regulation of dRheb GTPase. Nature 445:785–788CrossRefPubMedGoogle Scholar
  30. Jamet E, Albenne C, Boudart G, Irshad M, Canut H, Pont-Lezica R (2008) Recent advances in plant cell wall proteomics. Proteomics 8:893–908. CrossRefPubMedGoogle Scholar
  31. Jeon HJ, You SY, Park YS, Chang JW, Kim JS, Oh JS (2016) TCTP regulates spindle microtubule dynamics by stabilizing polar microtubules during mouse oocyte meiosis. Biochim Biophys Acta 1863:630–637. CrossRefPubMedGoogle Scholar
  32. Kang HS, Lee MJ, Song H, Han SH, Kim YM, Im JY, Choi I (2001) Molecular identification of IgE-dependent histamine-releasing factor as a B cell growth factor. J Immunol 166:6545–6554CrossRefPubMedGoogle Scholar
  33. Kashiwakura JC, Ando T, Matsumoto K, Kimura M, Kitaura J, Matho MH, Zajonc DM, Ozeki T, Ra C, MacDonald SM et al (2012) Histamine-releasing factor has a proinflammatory role in mouse models of asthma and allergy. J Clin Invest 122:218–228. CrossRefPubMedGoogle Scholar
  34. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protocols 10:845–858. CrossRefPubMedGoogle Scholar
  35. Kim SH, Cairns N, Fountoulakisc M, Lubec G (2001) Decreased brain histamine-releasing factor protein in patients with Down syndrome and Alzheimer’s disease. Neurosci Lett 300:41–44CrossRefPubMedGoogle Scholar
  36. Kim M, Min HJ, Won HY, Park H, Lee JC, Park HW, Chung J, Hwang ES, Lee K (2009) Dimerization of translationally controlled tumor protein is essential for its cytokine-like activity. PLoS One 4:e6464CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kim M, Kim M, Kim HY, Kim S, Jung J, Maeng J, Chang J, Lee K (2011) A protein transduction domain located at the NH2-terminus of human translationally controlled tumor protein for delivery of active molecules to cells. Biomaterials 32:222–230. CrossRefPubMedGoogle Scholar
  38. Kim G, LeBlanc ML, Wafula EK, dePamphilis CW, Westwood JH (2014) Plant science. Genomic-scale exchange of mRNA between a parasitic plant and its hosts. Science 345:808–811. CrossRefPubMedGoogle Scholar
  39. Kim HY, Kim S, Pyun HJ, Maeng J, Lee K (2015) Cellular uptake mechanism of TCTP-PTD in human lung carcinoma cells. Mol Pharm 12:194–203. CrossRefPubMedGoogle Scholar
  40. Le TP, Vuong LT, Kim AR, Hsu YC, Choi KW (2016) 14-3-3 proteins regulate TCTP-Rheb interaction for organ growth in Drosophila. Nat Commun 7:11501. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lespagnol A, Duflaut D, Beekman C, Blanc L, Fiucci G, Marine J-C, Vidal M, Amson R, Telerman A (2008) Exosome secretion, including the DNA damage-induced p53-dependent secretory pathway, is severely compromised in TSAP6/Steap3-null mice. Cell Death Differ 15(11):1723–1733CrossRefPubMedGoogle Scholar
  42. Lin MK, Lee YJ, Lough TJ, Phinney BS, Lucas WJ (2009) Analysis of the pumpkin phloem proteome provides insights into angiosperm sieve tube function. Mol. Cell Proteomics 8:343–356. CrossRefGoogle Scholar
  43. Liu H, Peng HW, Cheng YS, Yuan HS, Yang-Yen HF (2005) Stabilization and enhancement of the antiapoptotic activity of mcl-1 by TCTP. Mol Cell Biol 25:3117–3126CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lucas WJ, Groover A, Lichtenberger R, Furuta K, Yadav S-R, Helariutta Y, He X-Q, Fukuda H, Kang J, Brady SM, Patrick JW, Sperry J, Yoshida A, López-Millán A-F, Grusak MA, Kachroo P (2013) The plant vascular system: evolution, development and functions. J Integr Plant Biol 55(4):294–388CrossRefPubMedGoogle Scholar
  45. Ma Y-P, Zhu W-L (2012) Cytoplasmic and nuclear localization of TCTP in normal and cancer cells. Biochem Res Int 2012:871728. CrossRefPubMedPubMedCentralGoogle Scholar
  46. MacDonald SM, Rafnar T, Langdon J, Lichtenstein LM (1995) Molecular identification of an IgE-dependent histamine-releasing factor. Science 269:688–690CrossRefPubMedGoogle Scholar
  47. MacDonald SM, Bhisutthibhan J, Shapiro TA, Rogerson SJ, Taylor TE, Tembo M, Langdon JM, Meshnick SR (2001) Immune mimicry in malaria: Plasmodium falciparum secretes a functional histamine-releasing factor homolog in vitro and in vivo. Proc Natl Acad Sci U S A 98:10829–10832CrossRefPubMedPubMedCentralGoogle Scholar
  48. Maeng J, Kim M, Lee H, Lee K (2015) Insulin induces phosphorylation of serine residues of translationally controlled tumor protein in 293T cells. Int J Mol Sci 16:7565–7576. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Mathieu C, Demarta-Gatsi C, Porcherie A, Brega S, Thiberge S, Ronce K, Smith L, Peronet R, Amino R, Ménard R, Mécheri S (2015) Plasmodium berghei histamine-releasing factor favours liver-stage development via inhibition of IL-6 production and associates with a severe outcome of disease. Cell Microbiol 17:542–558. CrossRefPubMedGoogle Scholar
  50. Martínez-Navarro AC, Galván-Gordillo SV, Xoconostle-Cázares B, Ruiz-Medrano R (2013) Vascular gene expression: a hypothesis. Front Plant Sci 4:261. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Oh YT, Ahn CS, Jeong YJ, Kim JG, Ro HS, Han KH, Lee CW, Kim JW (2013) Aspergillus nidulans translationally controlled tumor protein has a role in the balance between asexual and sexual differentiation and normal hyphal branching. FEMS Microbiol Lett 343:20–25. CrossRefPubMedGoogle Scholar
  52. Oliveira DL, Nakayasu ES, Joffe LS, Guimarães AJ, Sobreira TJ, Nosanchuk JD, Cordero RJ, Frases S, Casadevall A, Almeida IC, Nimrichter L, Rodrigues ML (2010) Characterization of yeast extracellular vesicles: evidence for the participation of different pathways of cellular traffic in vesicle biogenesis. PLoS One 5:e11113. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Rinnerthaler M, Jarolim S, Heeren G, Palle E, Perju S, Klinger H, Bogengruber E, Madeo F, Braun RJ, Breitenbach-Koller L et al (2006) MMI1 (YKL056c, TMA19), the yeast orthologue of the translationally controlled tumor protein (TCTP) has apoptotic functions and interacts with both microtubules and mitochondria. Biochim Biophys Acta 1757:631–638CrossRefPubMedGoogle Scholar
  54. Rinnerthaler M, Lejskova R, Grousl T, Stradalova V, Heeren G, Richter K, Breitenbach-Koller L, Malinsky J, Hasek J, Breitenbach M (2013) Mmi1, the yeast homologue of mammalian TCTP, associates with stress granules in heat-shocked cells and modulates proteasome activity. PLoS One 8:e77791. CrossRefPubMedPubMedCentralGoogle Scholar
  55. Rodriguez-Medina C, Atkins CA, Mann AJ, Jordan ME, Smith PM (2011) Macromolecular composition of phloem exudate from white lupin (Lupinus albus L). BMC Plant Biol 11:36. CrossRefPubMedPubMedCentralGoogle Scholar
  56. Roque CG, Wong HH, Lin JQ, Holt CE (2016) Tumor protein Tctp regulates axon development in the embryonic visual system. Development 143:1134–1148. CrossRefPubMedPubMedCentralGoogle Scholar
  57. Sage-Ono K, Ono M, Harada H, Kamada H (1998) Dark-induced accumulation of mRNA for a homolog of translationally controlled tumor protein (TCTP) in Pharbitis. Plant Cell Physiol 39:357–360CrossRefPubMedGoogle Scholar
  58. Silverman JM, Chan SK, Robinson DP, Dwyer DM, Nandan D, Foster LJ, Reiner NE (2008) Proteomic analysis of the secretome of Leishmania donovani. Genome Biol 9:R35. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Sirois I, Raymond MA, Brassard N, Cailhier JF, Fedjaev M, Hamelin K, Londono I, Bendayan M, Pshezhetsky AV, Hébert MJ (2011) Caspase-3-dependent export of TCTP: a novel pathway for antiapoptotic intercellular communication. Cell Death Differ 18:549–562CrossRefPubMedGoogle Scholar
  60. Suga H, Chen Z, de Mendoza A, Sebé-Pedrós A, Brown MW, Kramer E, Carr M, Kerner P, Vervoort M, Sánchez-Pons N et al (2013) The Capsaspora genome reveals a complex unicellular prehistory of animals. Nat Commun 4:2325. CrossRefPubMedPubMedCentralGoogle Scholar
  61. Susini L, Besse S, Duflaut D, Lespagnol A, Beekman C, Fiucci G, Atkinson AR, Busso D, Poussin P, Marine JC et al (2008) TCTP protects from apoptotic cell death by antagonizing bax function. Cell Death Differ 15:1211–1220. CrossRefPubMedGoogle Scholar
  62. Tanchak MA, Fowke LC (1987) The morphology of multivesicular bodies in soybean protoplasts and their role in endocytosis. Protoplasma 138:173–182CrossRefGoogle Scholar
  63. Taylor KJ, Van TT, MacDonald SM, Meshnick SR, Fernley RT, Macreadie IG, Smooker PM (2015) Immunization of mice with Plasmodium TCTP delays establishment of Plasmodium infection. Parasite Immunol 37:23–31. CrossRefPubMedGoogle Scholar
  64. Thaw P, Baxter NJ, Hounslow AM, Price C, Waltho JP, Craven CJ (2001) Structure of TCTP reveals unexpected relationship with guanine nucleotide-free chaperones. Nat Struct Biol 8:701–704CrossRefPubMedGoogle Scholar
  65. Thébault S, Agez M, Chi X, Stojko J, Cura V, Telerman SB, Maillet L, Gautier F, Billas-Massobrio I, Birck C, Troffer-Charlier N, Karafin T, Honoré J, Senff-Ribeiro A, Montessuit S, Johnson CM, Juin P, Cianférani S, Martinou J-C, Andrews DW, Amson R, Telerman A, Cavarelli J (2016) TCTP contains a BH3-like domain, which instead of inhibiting, activates Bcl-xL. Sci Rep 6(1):19725CrossRefPubMedPubMedCentralGoogle Scholar
  66. Thieme CJ, Rojas-Triana M, Stecyk E, Schudoma C, Zhang W, Yang L, Miñambres M, Walther D, Schulze WX, Paz-Ares J et al (2015) Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nat Plants 1:15025. CrossRefPubMedGoogle Scholar
  67. Toscano-Morales R, Xoconostle-Cázares B, Martínez-Navarro AC, Ruiz-Medrano R (2014) Long distance movement of an Arabidopsis Translationally Controlled Tumor Protein (AtTCTP2) mRNA and protein in tobacco. Front Plant Sci 5:705. CrossRefPubMedPubMedCentralGoogle Scholar
  68. Toscano-Morales R, Xoconostle-Cázares B, Cabrera-Ponce JL, Hinojosa-Moya J, Ruiz-Salas JL, Galván-Gordillo SV, Guevara-González RG, Ruiz-Medrano R (2015) AtTCTP2, an Arabidopsis thaliana homolog of translationally controlled tumor protein, enhances in vitro plant regeneration. Front Plant Sci 6:468. CrossRefPubMedPubMedCentralGoogle Scholar
  69. Tsai MJ, Yang-Yen HF, Chiang MK, Wang MJ, Wu SS, Chen SH (2014) TCTP is essential for β-cell proliferation and mass expansion during development and β-cell adaptation in response to insulin resistance. Endocrinology 155:392–404. CrossRefPubMedGoogle Scholar
  70. Tuynder M, Fiucci G, Prieur S, Lespagnol A, Géant A, Beaucourt S, Duflaut D, Besse S, Susini L, Cavarelli J et al (2004) Translationally controlled tumor protein is a target of tumor reversion. Proc Natl Acad Sci U S A 101:15364–15369CrossRefPubMedPubMedCentralGoogle Scholar
  71. van de Sande WW, Janse DJ, Hira V, Goedhart H, van der Zee R, Ahmed AO, Ott A, Verbrugh H, van Belkum A (2006) Translationally controlled tumor protein from Madurella mycetomatis, a marker for tumorous mycetoma progression. J Immunol 177:1997–2005CrossRefPubMedGoogle Scholar
  72. Vargas G, Rocha JD, Oliveira DL, Albuquerque PC, Frases S, Santos SS, Nosanchuk JD, Gomes AM, Medeiros LC, Miranda K et al (2015) Compositional and immunobiological analyses of extracellular vesicles released by Candida albicans. Cell Microbiol 17:389–407. CrossRefPubMedGoogle Scholar
  73. Wang X, Fonseca BD, Tang H, Liu R, Elia A, Clemens MJ, Bommer UA, Proud CG (2008) Re-evaluating the roles of proposed modulators of mammalian target of rapamycin complex 1 (mTORC1) signaling. J Biol Chem 283:30482–30492. CrossRefPubMedPubMedCentralGoogle Scholar
  74. Wang J, Zhang CJ, Chia WN, Loh CC, Li Z, Lee YM, He Y, Yuan LX, Lim TK, Liu M et al (2015) Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum. Nat Commun 6:10111. CrossRefPubMedPubMedCentralGoogle Scholar
  75. Weber SS, Parente AF, Borges CL, Parente JA, Bailão AM, de Almeida Soares CM (2012) Analysis of the secretomes of Paracoccidioides mycelia and yeast cells. PLoS One 7:e52470. CrossRefPubMedPubMedCentralGoogle Scholar
  76. Weir W, Karagenç T, Baird M, Tait A, Shiels BR (2010) Evolution and diversity of secretome genes in the apicomplexan parasite Theileria annulata. BMC Genomics 11:42. CrossRefPubMedPubMedCentralGoogle Scholar
  77. Wu H, Gong W, Yao X, Wang J, Perrett S, Feng Y (2015) Evolutionarily conserved binding of translationally controlled tumor protein to eukaryotic elongation factor 1B. J Biol Chem 290:8694–8710. CrossRefPubMedGoogle Scholar
  78. Xiao B, Chen D, Luo S, Hao W, Jing F, Liu T, Wang S, Geng Y, Li L, Xu W et al (2016) Extracellular translationally controlled tumor protein promotes colorectal cancer invasion and metastasis through Cdc42/JNK/MMP9 signaling. Oncotarget.  10.18632/oncotarget.10315
  79. Yarm FR (2002) Plk phosphorylation regulates the microtubule-stabilizing protein TCTP. Mol Cell Biol 22:6209–6221CrossRefPubMedPubMedCentralGoogle Scholar
  80. Zhuo K, Chen J, Lin B, Wang J, Sun F, Hu L, Liao J (2016) A novel Meloidogyne enterolobii effector MeTCTP promotes parasitism by suppressing programmed cell death in host plants. Mol Plant Pathol.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Beatriz Xoconostle-Cázares
  • Roberto Ruiz-Medrano
    • 1
    Email author
  1. 1.Department of Biotechnology and Bioengineering, Center for Research and Advanced Studies of the National Polytechnic InstituteAvenida IPN 2508México CityMéxico

Personalised recommendations