Skip to main content

Role of TCTP for Cellular Differentiation and Cancer Therapy

  • Chapter
  • First Online:
Book cover TCTP/tpt1 - Remodeling Signaling from Stem Cell to Disease

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 64))

Abstract

The translationally controlled tumor protein (TCTP) is a highly conserved protein that is regulated due to a high number of extracellular stimuli. TCTP has an important role for cell cycle and normal development. On the other side, tumor reversion and malignant transformation have been associated with TCTP. TCTP has been found among the 12 genes that are differentially expressed during mouse oocyte maturation, and an overexpression of this gene was reported in a wide variety of different cancer types. Its antiapoptotic effect is indicated by the interaction with several proapoptotic proteins of the Bcl-2 family and the p53 tumor suppressor protein. In this article, we draw attention to the role of TCTP in cancer, especially, focusing on cell differentiation and tumor reversion, a biological process by which highly tumorigenic cells lose their malignant phenotype. This protein has been shown to be the most strongly downregulated protein in revertant cells compared to the parental cancer cells. Decreased expression of TCTP results either in the reprogramming of cancer cells into reversion or apoptosis. As conventional chemotherapy is frequently associated with the development of drug resistance and high toxicity, the urge for the development of new or additional scientific approaches falls into place. Differentiation therapy aims at reinducing differentiation backward to the nonmalignant cellular state. Here, different approaches have been reported such as the induction of retinoid pathways and the use of histone deacetylase inhibitors. Also, PPARγ agonists and the activation of the vitamin D receptor have been reported as potential targets in differentiation therapy. As TCTP is known as the histamine-releasing factor, antihistaminic drugs have been shown to target this protein. Antihistaminic compounds, hydroxyzine and promethazine, inhibited cell growth of cancer cells and decreased TCTP expression of breast cancer and leukemia cells. Recently, we found that two antihistaminics, levomepromazine and buclizine, inhibited cancer cell growth by direct binding to TCTP and induction of cell differentiation. These data confirmed that TCTP is an exquisite target for anticancer differentiation therapy and antihistaminics have potential to be lead compounds for the direct interaction with TCTP as new inhibitors of human TCTP and tumor growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADDS:

Adenylosuccinate synthase

AIF:

Apoptosis-inducing factor

APL:

Acute promyelocytic leukemia

ATRA:

All-trans retinoic acid

Bcl-2:

B-cell lymphoma 2

BMP:

Bone morphogenic proteins

CH60:

Mitochondrial 60 kDa heat shock protein

CHFR:

Checkpoint with forkhead and ring finger domains

COF1:

Cofilin-1

ENOA:

α-Enolase

ER60:

Probable protein disulfide isomerase

ES:

Embryonic stem

FABP:

Liver fatty acid-binding protein

GTA1:

Glutathione S-transferase alpha

HDAC:

Histone deacetylase

HSP105:

Heat shock protein 105

KCRB:

Creatine kinase B

Mcl-1:

Myeloid cell leukemia 1

MDM2:

Murine double minute 2

MPSS:

Megasort and massively parallel signature sequencing

NDKA:

Nucleoside diphosphate kinase A

NPM2:

Nucleoplasmin 2

Oct4:

Octamer-binding transcription factor 4

PDCD6IP:

Programmed cell death six-interacting protein

PPARγ:

Peroxisome proliferator-activated receptor-γ

PS1:

Presenilin 1

RARs:

Retinoic acid receptors

RMS:

Rhabdomyosarcoma

SAHA:

Suberoylanilide hydroxamic acid

SIAH1:

Seven in absentia homologue 1

Sox2:

Sex-determining region Y-box 2

STAT3:

Signal transducer and activator of transcription 3

STI1:

Stress-inducible phosphoprotein 1

TACC3:

Transforming acidic coiled-coil protein 3

TCTP:

Translationally controlled tumor protein

TSAP:

Tumor suppressor-activated pathway

VDR:

Vitamin D receptor

References

  • Acunzo J et al (2014) TCTP as therapeutic target in cancers. Cancer Treat Rev 40(6):760–769

    Article  CAS  PubMed  Google Scholar 

  • Amit J et al (2009) Adamantinoma of tibial shaft. J Nepal Med Assoc 48(176):331–334

    Google Scholar 

  • Amson RB et al (1996) Isolation of 10 differentially expressed cDNAs in p53-induced apoptosis: activation of the vertebrate homologue of the drosophila seven in absentia gene. Proc Natl Acad Sci U S A 93(9):3953–3957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amson R et al (2011) Reciprocal repression between P53 and TCTP. Nat Med 18(1):91–99

    Article  PubMed  CAS  Google Scholar 

  • Amson R, Karp JE, Telerman A (2013a) Lessons from tumor reversion for cancer treatment. Curr Opin Oncol 25(1):59–65

    Article  CAS  PubMed  Google Scholar 

  • Amson R et al (2013b) TPT1/TCTP-regulated pathways in phenotypic reprogramming. Trends Cell Biol 23(1):37–46

    Article  CAS  PubMed  Google Scholar 

  • Amzallag N et al (2004) TSAP6 facilitates the secretion of translationally controlled tumor protein/histamine-releasing factor via a nonclassical pathway. J Biol Chem 279(44):46104–46112

    Article  CAS  PubMed  Google Scholar 

  • Askanazy M (1907) Die Teratome nach ihrem Bau, ihrem Verlauf, ihrer Genese und im Vergleich zum experimentellen Teratoid. Verhandlungen der deutschen pathologischen Gesellschaft i 11:39–82

    Google Scholar 

  • Banerjee P, Chatterjee M (2003) Antiproliferative role of vitamin D and its analogs--a brief overview. Mol Cell Biochem 253(1–2):247–254

    Article  CAS  PubMed  Google Scholar 

  • Barlow JW et al (2006) Differentiation of rhabdomyosarcoma cell lines using retinoic acid. Pediatr Blood Cancer 47(6):773–784

    Article  PubMed  Google Scholar 

  • Baylot V et al (2012) Targeting TCTP as a New Therapeutic Strategy in Castration-resistant Prostate Cancer. Mol Ther 20(12):2244–2256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bettoun DJ et al (2002) A vitamin D receptor-Ser/Thr phosphatase-p70 S6 kinase complex and modulation of its enzymatic activities by the ligand. J Biol Chem 277(28):24847–24850

    Article  CAS  PubMed  Google Scholar 

  • Bini L et al (1997) Protein expression profiles in human breast ductal carcinoma and histologically normal tissue. Electrophoresis 18(15):2832–2841

    Article  CAS  PubMed  Google Scholar 

  • Bohnsack BL, Hirschi KK (2004) Nutrient regulation of cell cycle progression. Annu Rev Nutr 24:433–453

    Article  CAS  PubMed  Google Scholar 

  • Bommer UA, Thiele BJ (2004) The translationally controlled tumour protein (TCTP). Int J Biochem Cell Biol 36(3):379–385

    Article  CAS  PubMed  Google Scholar 

  • Boyle BJ et al (2001) Insulin-like growth factor binding protein-3 mediates 1 alpha,25-dihydroxyvitamin d(3) growth inhibition in the LNCaP prostate cancer cell line through p21/WAF1. J Urol 165(4):1319–1324

    Article  CAS  PubMed  Google Scholar 

  • Brenner S et al (2000a) In vitro cloning of complex mixtures of DNA on microbeads: physical separation of differentially expressed cDNAs. Proc Natl Acad Sci U S A 97(4):1665–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenner S et al (2000b) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18(6):630–634

    Article  CAS  PubMed  Google Scholar 

  • Brioudes F et al (2010) Translationally controlled tumor protein is a conserved mitotic growth integrator in animals and plants. Proc Natl Acad Sci U S A 107(37):16384–16389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodowicz T et al (1999) Inhibition of proliferation and induction of apoptosis in soft tissue sarcoma cells by interferon-alpha and retinoids. Br J Cancer 80(9):1350–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgess A et al (2008) Chfr interacts and colocalizes with TCTP to the mitotic spindle. Oncogene 27(42):5554–5566

    Article  CAS  PubMed  Google Scholar 

  • Cans C et al (2003) Translationally controlled tumor protein acts as a guanine nucleotide dissociation inhibitor on the translation elongation factor eEF1A. Proc Natl Acad Sci U S A 100(24):13892–13897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chambers I et al (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113(5):643–655

    Article  CAS  PubMed  Google Scholar 

  • Chen SH et al (2007a) A knockout mouse approach reveals that TCTP functions as an essential factor for cell proliferation and survival in a tissue- or cell type-specific manner. Mol Biol Cell 18(7):2525–2532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z et al (2007b) The expression of AmphiTCTP, a TCTP orthologous gene in amphioxus related to the development of notochord and somites. Comp Biochem Physiol B Biochem Mol Biol 147(3):460–465

    Article  PubMed  CAS  Google Scholar 

  • Chou M et al (2016) A translationally controlled tumor protein gene Rpf41 is required for the nodulation of Robinia pseudoacacia. Plant Mol Biol 90(4–5):389–402

    Article  CAS  PubMed  Google Scholar 

  • Cress WD, Seto E (2000) Histone deacetylases, transcriptional control, and cancer. J Cell Physiol 184(1):1–16

    Article  CAS  PubMed  Google Scholar 

  • Crouch GD, Helman LJ (1991) All-trans-retinoic acid inhibits the growth of human rhabdomyosarcoma cell lines. Cancer Res 51(18):4882–4887

    CAS  PubMed  Google Scholar 

  • Debrock G et al (2003) A phase II trial with rosiglitazone in liposarcoma patients. Br J Cancer 89(8):1409–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donovan PJ, Gearhart J (2001) The end of the beginning for pluripotent stem cells. Nature 414(6859):92–97

    Article  CAS  PubMed  Google Scholar 

  • Dusso AS, Brown AJ, Slatopolsky E (2005) Vitamin D. Am J Physiol Ren Physiol 289(1):F8–28

    Article  CAS  Google Scholar 

  • Fiucci G et al (2004) Siah-1b is a direct transcriptional target of p53: identification of the functional p53 responsive element in the siah-1b promoter. Proc Natl Acad Sci U S A 101(10):3510–3515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funston G et al (2012) Binding of translationally controlled tumour protein to the N-terminal domain of HDM2 is inhibited by nutlin-3. PLoS One 7(8):e42642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gachet Y et al (1999) The growth-related, translationally controlled protein P23 has properties of a tubulin binding protein and associates transiently with microtubules during the cell cycle. J Cell Sci 112(Pt 8):1257–1271

    CAS  PubMed  Google Scholar 

  • Garattini E, Gianni M, Terao M (2007) Cytodifferentiation by retinoids, a novel therapeutic option in oncology: rational combinations with other therapeutic agents. Vitam Horm 75:301–354

    Article  CAS  PubMed  Google Scholar 

  • Gil-Ad I et al (2004) Characterization of phenothiazine-induced apoptosis in neuroblastoma and glioma cell lines: clinical relevance and possible application for brain-derived tumors. J Mol Neurosci 22(3):189–198

    Article  CAS  PubMed  Google Scholar 

  • Ginis I et al (2004) Differences between human and mouse embryonic stem cells. Dev Biol 269(2):360–380

    Article  CAS  PubMed  Google Scholar 

  • Gnanasekar M, Dakshinamoorthy G, Ramaswamy K (2009) Translationally controlled tumor protein is a novel heat shock protein with chaperone-like activity. Biochem Biophys Res Commun 386(2):333–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graidist P, Phongdara A, Fujise K (2004) Antiapoptotic protein partners fortilin and MCL1 independently protect cells from 5-fluorouracil-induced cytotoxicity. J Biol Chem 279(39):40868–40875

    Article  CAS  PubMed  Google Scholar 

  • Graidist P et al (2007) Fortilin binds Ca2+ and blocks Ca2+-dependent apoptosis in vivo. Biochem J 408(2):181–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grommes C, Landreth GE, Heneka MT (2004) Antineoplastic effects of peroxisome proliferator-activated receptor gamma agonists. Lancet Oncol 5(7):419–429

    Article  CAS  PubMed  Google Scholar 

  • Haghighat NG, Ruben L (1992) Purification of novel calcium binding proteins from Trypanosoma brucei: properties of 22-, 24- and 38-kilodalton proteins. Mol Biochem Parasitol 51(1):99–110

    Article  CAS  PubMed  Google Scholar 

  • Hansen LA et al (2000) Retinoids in chemoprevention and differentiation therapy. Carcinogenesis 21(7):1271–1279

    Article  CAS  PubMed  Google Scholar 

  • Hershberger PA et al (2001) Calcitriol (1,25-dihydroxycholecalciferol) enhances paclitaxel antitumor activity in vitro and in vivo and accelerates paclitaxel-induced apoptosis. Clin Cancer Res 7(4):1043–1051

    CAS  PubMed  Google Scholar 

  • Hsu YC et al (2007) Drosophila TCTP is essential for growth and proliferation through regulation of dRheb GTPase. Nature 445(7129):785–788

    Article  CAS  PubMed  Google Scholar 

  • Huang ME, Ye YC, Zhao L (1987a) Treatment of acute promyelocytic leukemia by retinoic acid with or without low dose cytosine arabinoside: report of 4 cases. Zhonghua Nei Ke Za Zhi 26(6):330–332. 380

    CAS  PubMed  Google Scholar 

  • Huang ME et al (1987b) All-trans retinoic acid with or without low dose cytosine arabinoside in acute promyelocytic leukemia. Report of 6 cases. Chin Med J 100(12):949–953

    CAS  PubMed  Google Scholar 

  • Inoue T, Kamiyama J, Sakai T (1999) Sp1 and NF-Y synergistically mediate the effect of vitamin D(3) in the p27(Kip1) gene promoter that lacks vitamin D response elements. J Biol Chem 274(45):32309–32317

    Article  CAS  PubMed  Google Scholar 

  • Israeli D et al (1997) A novel p53-inducible gene, PAG608, encodes a nuclear zinc finger protein whose overexpression promotes apoptosis. EMBO J 16(14):4384–4392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain MV et al (2013) Interconnections between apoptotic, autophagic and necrotic pathways: implications for cancer therapy development. J Cell Mol Med 17(1):12–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirchhof N et al (2000) Expression pattern of Oct-4 in preimplantation embryos of different species. Biol Reprod 63(6):1698–1705

    Article  CAS  PubMed  Google Scholar 

  • Koziol MJ, Garrett N, Gurdon JB (2007) Tpt1 activates transcription of oct4 and nanog in transplanted somatic nuclei. Curr Biol 17(9):801–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koziol MJ, Gurdon JB (2012) TCTP in development and cancer. Biochem Res Int 2012:105203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kubiak JZ et al (2008) Temporal regulation of embryonic M-phases. Folia Histochem Cytobiol 46(1):5–9

    Article  CAS  PubMed  Google Scholar 

  • Lal S et al (1993) Levomepromazine receptor binding profile in human brain--implications for treatment-resistant schizophrenia. Acta Psychiatr Scand 87(6):380–383

    Article  CAS  PubMed  Google Scholar 

  • Lespagnol A et al (2008) Exosome secretion, including the DNA damage-induced p53-dependent secretory pathway, is severely compromised in TSAP6/Steap3-null mice. Cell Death Differ 15(11):1723–1733

    Article  CAS  PubMed  Google Scholar 

  • Leszczyniecka M et al (2001) Differentiation therapy of human cancer: basic science and clinical applications. Pharmacol Ther 90(2–3):105–156

    Article  CAS  PubMed  Google Scholar 

  • Li F, Zhang D, Fujise K (2001) Characterization of fortilin, a novel antiapoptotic protein. J Biol Chem 276(50):47542–47549

    Article  CAS  PubMed  Google Scholar 

  • Liang P, Pardee AB (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257(5072):967–971

    Article  CAS  PubMed  Google Scholar 

  • Liu M et al (1996) Transcriptional activation of the Cdk inhibitor p21 by vitamin D3 leads to the induced differentiation of the myelomonocytic cell line U937. Genes Dev 10(2):142–153

    Article  CAS  PubMed  Google Scholar 

  • Liu H et al (2005) Stabilization and enhancement of the antiapoptotic activity of mcl-1 by TCTP. Mol Cell Biol 25(8):3117–3126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo P et al (2010) Retinoid-suppressed phosphorylation of RARalpha mediates the differentiation pathway of osteosarcoma cells. Oncogene 29(19):2772–2783

    Article  CAS  PubMed  Google Scholar 

  • MacDonald SM et al (1995) Molecular identification of an IgE-dependent histamine-releasing factor. Science 269(5224):688–690

    Article  CAS  PubMed  Google Scholar 

  • Mai A et al (2005) Histone deacetylation in epigenetics: an attractive target for anticancer therapy. Med Res Rev 25(3):261–309

    Article  CAS  PubMed  Google Scholar 

  • Martirosyan AR et al (2004) Differentiation-inducing quinolines as experimental breast cancer agents in the MCF-7 human breast cancer cell model. Biochem Pharmacol 68(9):1729–1738

    Article  CAS  PubMed  Google Scholar 

  • Masuda S, Jones G (2006) Promise of vitamin D analogues in the treatment of hyperproliferative conditions. Mol Cancer Ther 5(4):797–808

    Article  CAS  PubMed  Google Scholar 

  • Masui S et al (2007) Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol 9(6):625–635

    Article  CAS  PubMed  Google Scholar 

  • Miao X et al (2013) TCTP overexpression is associated with the development and progression of glioma. Tumour Biol 34(6):3357–3361

    Article  CAS  PubMed  Google Scholar 

  • Mitsui K et al (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113(5):631–642

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto K et al (2011) Nuclear actin polymerization is required for transcriptional reprogramming of Oct4 by oocytes. Genes Dev 25(9):946–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison RF, Farmer SR (1999) Role of PPARgamma in regulating a cascade expression of cyclin-dependent kinase inhibitors, p18(INK4c) and p21(Waf1/Cip1), during adipogenesis. J Biol Chem 274(24):17088–17097

    Article  CAS  PubMed  Google Scholar 

  • Mousset S, Rommelaere J (1982) Minute virus of mice inhibits cell transformation by simian virus 40. Nature 300(5892):537–539

    Article  CAS  PubMed  Google Scholar 

  • Munster PN et al (2001) The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces differentiation of human breast cancer cells. Cancer Res 61(23):8492–8497

    CAS  PubMed  Google Scholar 

  • Nagano-Ito M, Ichikawa S (2012) Biological effects of mammalian translationally controlled tumor protein (TCTP) on cell death, proliferation, and tumorigenesis. Biochem Res Int 2012:204960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nagpal S, Na S, Rathnachalam R (2005) Noncalcemic actions of vitamin D receptor ligands. Endocr Rev 26(5):662–687

    Article  CAS  PubMed  Google Scholar 

  • Nemani M et al (1996) Activation of the human homologue of the Drosophila sina gene in apoptosis and tumor suppression. Proc Natl Acad Sci U S A 93(17):9039–9042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng KW et al (1985) Effect of retinoids on the growth, ultrastructure, and cytoskeletal structures of malignant rat osteoblasts. Cancer Res 45(10):5106–5113

    CAS  PubMed  Google Scholar 

  • Nishimoto M et al (1999) The gene for the embryonic stem cell coactivator UTF1 carries a regulatory element which selectively interacts with a complex composed of Oct-3/4 and Sox-2. Mol Cell Biol 19(8):5453–5465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niwa H, Miyazaki J, Smith AG (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24(4):372–376

    Article  CAS  PubMed  Google Scholar 

  • Oh YT et al (2013) Aspergillus nidulans translationally controlled tumor protein has a role in the balance between asexual and sexual differentiation and normal hyphal branching. FEMS Microbiol Lett 343(1):20–25

    Article  CAS  PubMed  Google Scholar 

  • Olsson I et al (1983) Induction of differentiation of the human histiocytic lymphoma cell line U-937 by 1 alpha,25-dihydroxycholecalciferol. Cancer Res 43(12 Pt 1):5862–5867

    CAS  PubMed  Google Scholar 

  • Pan GJ et al (2002) Stem cell pluripotency and transcription factor Oct4. Cell Res 12(5–6):321–329

    Article  PubMed  Google Scholar 

  • Passer BJ et al (2003) The p53-inducible TSAP6 gene product regulates apoptosis and the cell cycle and interacts with Nix and the Myt1 kinase. Proc Natl Acad Sci U S A 100(5):2284–2289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pesce M, Schöler HR (2001) Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells 19(4):271–278

    Article  CAS  PubMed  Google Scholar 

  • Pierce GB, Wallace C (1971) Differentiation of malignant to benign cells. Cancer Res 31(2):127–134

    CAS  PubMed  Google Scholar 

  • Platta CS et al (2007) The HDAC inhibitor trichostatin A inhibits growth of small cell lung cancer cells. J Surg Res 142(2):219–226

    Article  CAS  PubMed  Google Scholar 

  • Rho SB et al (2011) Anti-apoptotic protein TCTP controls the stability of the tumor suppressor p53. FEBS Lett 585(1):29–35

    Article  CAS  PubMed  Google Scholar 

  • Rigby WF et al (1984) Differentiation of a human monocytic cell line by 1,25-dihydroxyvitamin D3 (calcitriol): a morphologic, phenotypic, and functional analysis. Blood 64(5):1110–1115

    CAS  PubMed  Google Scholar 

  • Riley T et al (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9(5):402–412

    Article  CAS  PubMed  Google Scholar 

  • Roperch JP et al (1998) Inhibition of presenilin 1 expression is promoted by p53 and p21WAF-1 and results in apoptosis and tumor suppression. Nat Med 4(7):835–838

    Article  CAS  PubMed  Google Scholar 

  • Roperch JP et al (1999) SIAH-1 promotes apoptosis and tumor suppression through a network involving the regulation of protein folding, unfolding, and trafficking: identification of common effectors with p53 and p21(Waf1). Proc Natl Acad Sci U S A 96(14):8070–8073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rots NY et al (1998) A differential screen for ligand-regulated genes: identification of HoxA10 as a target of vitamin D3 induction in myeloid leukemic cells. Mol Cell Biol 18(4):1911–1918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samuel S, Sitrin MD (2008) Vitamin D’s role in cell proliferation and differentiation. Nutr Rev 66(10 Suppl 2):S116–S124

    Article  PubMed  Google Scholar 

  • Sanchez JC et al (1997) Translationally controlled tumor protein: a protein identified in several nontumoral cells including erythrocytes. Electrophoresis 18(1):150–155

    Article  CAS  PubMed  Google Scholar 

  • Sato N et al (2003) Molecular signature of human embryonic stem cells and its comparison with the mouse. Dev Biol 260(2):404–413

    Article  CAS  PubMed  Google Scholar 

  • Seo EJ, Efferth T (2016) Interaction of antihistaminic drugs with human translationally controlled tumor protein (TCTP) as novel approach for differentiation therapy. Oncotarget 7(13):16818–16839

    Article  PubMed  PubMed Central  Google Scholar 

  • Sertznig P et al (2007) Present concepts and future outlook: function of peroxisome proliferator-activated receptors (PPARs) for pathogenesis, progression, and therapy of cancer. J Cell Physiol 212(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Sinha P et al (2000) Identification of novel proteins associated with the development of chemoresistance in malignant melanoma using two-dimensional electrophoresis. Electrophoresis 21(14):3048–3057

    Article  CAS  PubMed  Google Scholar 

  • Song X, Norman AW (1998) 1Alpha,25-dihydroxyvitamin D3 and phorbol ester mediate the expression of alkaline phosphatase in NB4 acute promyelocytic leukemia cells. Leuk Res 22(1):69–76

    Article  CAS  PubMed  Google Scholar 

  • Spira AI, Carducci MA (2003) Differentiation therapy. Curr Opin Pharmacol 3(4):338–343

    Article  CAS  PubMed  Google Scholar 

  • Stierum R et al (2003) Proteome analysis reveals novel proteins associated with proliferation and differentiation of the colorectal cancer cell line Caco-2. Biochim Biophys Acta 1650(1–2):73–91

    Article  CAS  PubMed  Google Scholar 

  • Strobl JS et al (1990) Inhibition of human breast cancer cell proliferation in tissue culture by the neuroleptic agents pimozide and thioridazine. Cancer Res 50(17):5399–5405

    CAS  PubMed  Google Scholar 

  • Susini L et al (2008) TCTP protects from apoptotic cell death by antagonizing bax function. Cell Death Differ 15(8):1211–1220

    Article  CAS  PubMed  Google Scholar 

  • Tani T et al (2007) Bovine oocytes with the potential to reprogram somatic cell nuclei have a unique 23-kDa protein, phosphorylated transcriptionally controlled tumor protein (TCTP). Cloning Stem Cells 9(2):267–280

    Article  CAS  PubMed  Google Scholar 

  • Telerman A, Amson R (2009) The molecular programme of tumour reversion: the steps beyond malignant transformation. Nat Rev Cancer 9(3):206–216

    Article  CAS  PubMed  Google Scholar 

  • Telerman A et al (1993) A model for tumor suppression using H-1 parvovirus. Proc Natl Acad Sci U S A 90(18):8702–8706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thein R, Lotan R (1982) Sensitivity of cultured human osteosarcoma and chondrosarcoma cells to retinoic acid. Cancer Res 42(11):4771–4775

    CAS  PubMed  Google Scholar 

  • Thurston DE (2007) Chemistry and pharmacology of anticancer drugs. CRC Press/Taylor and Francis Group, Boca Raton

    Google Scholar 

  • Tontonoz P, Hu E, Spiegelman BM (1994) Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79(7):1147–1156

    Article  CAS  PubMed  Google Scholar 

  • Tontonoz P et al (1997) Terminal differentiation of human liposarcoma cells induced by ligands for peroxisome proliferator-activated receptor gamma and the retinoid X receptor. Proc Natl Acad Sci U S A 94(1):237–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toolan HW (1967) Lack of oncogenic effect of the H-viruses for hamsters. Nature 214(5092):1036

    Article  CAS  PubMed  Google Scholar 

  • Toscano-Morales R et al (2015) AtTCTP2, an Arabidopsis thaliana homolog of Translationally Controlled Tumor Protein, enhances in vitro plant regeneration. Front Plant Sci 6:468

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsarova K, Yarmola EG, Bubb MR (2010) Identification of a cofilin-like actin-binding site on translationally controlled tumor protein (TCTP). FEBS Lett 584(23):4756–4760

    Article  CAS  PubMed  Google Scholar 

  • Tuynder M et al (2002) Biological models and genes of tumor reversion: cellular reprogramming through tpt1/TCTP and SIAH-1. Proc Natl Acad Sci U S A 99(23):14976–14981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuynder M et al (2004) Translationally controlled tumor protein is a target of tumor reversion. Proc Natl Acad Sci U S A 101(43):15364–15369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitale AM et al (2007) Proteomic profiling of murine oocyte maturation. Mol Reprod Dev 74(5):608–616

    Article  CAS  PubMed  Google Scholar 

  • Wahli W, Braissant O, Desvergne B (1995) Peroxisome proliferator activated receptors: transcriptional regulators of adipogenesis, lipid metabolism and more. Chem Biol 2(5):261–266

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Gao L (2005) Proteomic analysis of neural differentiation of mouse embryonic stem cells. Proteomics 5(17):4414–4426

    Article  CAS  PubMed  Google Scholar 

  • Wang QM, Luo X, Studzinski GP (1997) Cyclin-dependent kinase 6 is the principal target of p27/Kip1 regulation of the G1-phase traverse in 1,25-dihydroxyvitamin D3-treated HL60 cells. Cancer Res 57(14):2851–2855

    CAS  PubMed  Google Scholar 

  • Waxman S (2000) Differentiation therapy in acute myelogenous leukemia (non-APL). Leukemia 14(3):491–496

    Article  CAS  PubMed  Google Scholar 

  • Williams AC et al (1996) In vitro models for studying colorectal carcinogenesis: cellular and molecular events including APC and Rb cleavage in the control of proliferation, differentiation and apoptosis. Biochim Biophys Acta 1288(1):F9–19

    PubMed  Google Scholar 

  • Xu A, Bellamy AR, Taylor JA (1999) Expression of translationally controlled tumour protein is regulated by calcium at both the transcriptional and post-transcriptional level. Biochem J 342(Pt 3):683–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan L et al (2000) A cnidarian homologue of translationally controlled tumor protein (P23/TCTP). Dev Genes Evol 210(10):507–511

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Kozopas KM, Craig RW (1995) The intracellular distribution and pattern of expression of Mcl-1 overlap with, but are not identical to, those of Bcl-2. J Cell Biol 128(6):1173–1184

    Article  CAS  PubMed  Google Scholar 

  • Yang Y et al (2005) An N-terminal region of translationally controlled tumor protein is required for its antiapoptotic activity. Oncogene 24(30):4778–4788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarm FR (2002) Plk phosphorylation regulates the microtubule-stabilizing protein TCTP. Mol Cell Biol 22(17):6209–6221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ying QL et al (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115(3):281–292

    Article  CAS  PubMed  Google Scholar 

  • Zhang D et al (2002) Physical and functional interaction between myeloid cell leukemia 1 protein (MCL1) and fortilin. The potential role of MCL1 as a fortilin chaperone. J Biol Chem 277(40):37430–37438

    Article  CAS  PubMed  Google Scholar 

  • Zhelev Z et al (2004) Phenothiazines suppress proliferation and induce apoptosis in cultured leukemic cells without any influence on the viability of normal lymphocytes. Phenothiazines and leukemia. Cancer Chemother Pharmacol 53(3):267–275

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Efferth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seo, EJ., Fischer, N., Efferth, T. (2017). Role of TCTP for Cellular Differentiation and Cancer Therapy. In: Telerman, A., Amson, R. (eds) TCTP/tpt1 - Remodeling Signaling from Stem Cell to Disease. Results and Problems in Cell Differentiation, vol 64. Springer, Cham. https://doi.org/10.1007/978-3-319-67591-6_14

Download citation

Publish with us

Policies and ethics