Advertisement

Tctp in Neuronal Circuitry Assembly

  • Cláudio Gouveia RoqueEmail author
  • Christine E. Holt
Chapter
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 64)

Abstract

Although tctp expression in many areas of the human brain was reported more than 15 years ago, little was known about how it functions in neurons. The early notion that Tctp is primarily expressed in mitotic cells, together with reports suggesting a relative low abundance in the brain, has perhaps potentiated this almost complete disregard for the study of Tctp in the context of neuron biology. However, recent evidence has challenged this view, as a number of independent genome-wide profiling studies identified tctp mRNA among the most enriched in the axonal compartment across diverse neuronal populations, including embryonic retinal ganglion cells. Considering the emerging parallels between axon guidance and cancer cell invasion, the axonal expression of cancer-associated tctp was suggestive of it holding an unexplored role in the wiring of neuronal circuits. Our study revealed that Tctp is necessary for the accurate and timely development of axon projections during the formation of vertebrate retinal circuits via its association with the survival machinery of the axon. Globally, the findings indicate that compromised pro-survival signaling in Tctp-deficient axons results in mitochondrial dysfunction and a subsequent decrease in axonal mitochondrial density. These effects likely translate into a metabolic state inadequate to support the normal guidance and extension processes of a developing axon.

Notes

Acknowledgements

Our work was supported by Fundação para a Ciência e a Tecnologia [fellowship SFRH/BD/33891/2009 to Cláudio Gouveia Roque] and a Wellcome Trust Programme Grant [085314/Z/08/Z to Christine Holt]. Cláudio Gouveia Roque is extremely grateful to the Doctoral Programme in Experimental Biology and Biomedicine hosted by the Center for Neuroscience and Cell Biology at University of Coimbra.

References

  1. Alexander C et al (2000) OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 26(2):211–215CrossRefPubMedGoogle Scholar
  2. Amson R et al (2012) Reciprocal repression between P53 and TCTP. Nat Med 18(1):91–99CrossRefGoogle Scholar
  3. Andreassi C, Riccio A (2009) To localize or not to localize: mRNA fate is in 3'UTR ends. Trends Cell Biol 19(9):465–474CrossRefPubMedGoogle Scholar
  4. Andreassi C et al (2010) An NGF-responsive element targets myo-inositol monophosphatase-1 mRNA to sympathetic neuron axons. Nat Neurosci 13(3):291–301CrossRefPubMedGoogle Scholar
  5. Baleriola J et al (2014) Axonally synthesized ATF4 transmits a neurodegenerative signal across brain regions. Cell 158(5):1159–1172CrossRefPubMedPubMedCentralGoogle Scholar
  6. Barnes AP, Polleux F (2009) Establishment of axon-dendrite polarity in developing neurons. Annu Rev Neurosci 32:347–381CrossRefPubMedPubMedCentralGoogle Scholar
  7. Ben-Yaakov K et al (2012) Axonal transcription factors signal retrogradely in lesioned peripheral nerve. EMBO J 31(6):1350–1363CrossRefPubMedPubMedCentralGoogle Scholar
  8. Biankin AV et al (2012) Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491(7424):399–405CrossRefPubMedPubMedCentralGoogle Scholar
  9. Brittis PA, Lu Q, Flanagan JG (2002) Axonal protein synthesis provides a mechanism for localized regulation at an intermediate target. Cell 110(2):223–235CrossRefPubMedGoogle Scholar
  10. Campbell DS, Holt CE (2001) Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron 32(6):1013–1026CrossRefPubMedGoogle Scholar
  11. Chen SH et al (2007) A knockout mouse approach reveals that TCTP functions as an essential factor for cell proliferation and survival in a tissue- or cell type-specific manner. Mol Biol Cell 18(7):2525–2532CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cox LJ et al (2008) Intra-axonal translation and retrograde trafficking of CREB promotes neuronal survival. Nat Cell Biol 10(2):149–159CrossRefPubMedPubMedCentralGoogle Scholar
  13. Crossland WJ et al (1974) The specification of the retino-tectal projection in the chick. J Comp Neurol 155(2):127–164CrossRefPubMedGoogle Scholar
  14. Czabotar PE et al (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15(1):49–63CrossRefPubMedGoogle Scholar
  15. Dekkers MP, Nikoletopoulou V, Barde YA (2013) Cell biology in neuroscience: death of developing neurons: new insights and implications for connectivity. J Cell Biol 203(3):385–393CrossRefPubMedPubMedCentralGoogle Scholar
  16. Delettre C et al (2000) Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 26(2):207–210CrossRefPubMedGoogle Scholar
  17. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3(6):453–458. https://doi.org/10.1038/nrc1098 CrossRefPubMedGoogle Scholar
  18. Fountoulakis M et al (2002) The rat liver mitochondrial proteins. Electrophoresis 23(2):311–328CrossRefPubMedGoogle Scholar
  19. Friedman JR, Nunnari J (2014) Mitochondrial form and function. Nature 505(7483):335–343CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gioio AE et al (2001) Local synthesis of nuclear-encoded mitochondrial proteins in the presynaptic nerve terminal. J Neurosci Res 64(5):447–453CrossRefPubMedGoogle Scholar
  21. Gumy LF et al (2011) Transcriptome analysis of embryonic and adult sensory axons reveals changes in mRNA repertoire localization. RNA 17(1):85–98CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hengst U et al (2009) Axonal elongation triggered by stimulus-induced local translation of a polarity complex protein. Nat Cell Biol 11(8):1024–1030CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hilton M, Middleton G, Davies AM (1997) Bcl-2 influences axonal growth rate in embryonic sensory neurons. Curr Biol 7(10):798–800CrossRefPubMedGoogle Scholar
  24. Hirokawa N, Takemura R (2005) Molecular motors and mechanisms of directional transport in neurons. Nat Rev Neurosci 6(3):201–214CrossRefPubMedGoogle Scholar
  25. Holt CE, Harris WA (1983) Order in the initial retinotectal map in Xenopus: a new technique for labelling growing nerve fibres. Nature 301(5896):150–152CrossRefPubMedGoogle Scholar
  26. Jung H, Yoon BC, Holt CE (2012) Axonal mRNA localization and local protein synthesis in nervous system assembly, maintenance and repair. Nat Rev Neurosci 13(5):308–324PubMedPubMedCentralGoogle Scholar
  27. Jung H et al (2014) Remote control of gene function by local translation. Cell 157(1):26–40CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kim SH et al (2001) Decreased brain histamine-releasing factor protein in patients with Down syndrome and Alzheimer's disease. Neurosci Lett 300(1):41–44CrossRefPubMedGoogle Scholar
  29. Lance-Jones C, Landmesser L (1981) Pathway selection by chick lumbosacral motoneurons during normal development. Proc R Soc Lond B Biol Sci 214(1194):1–18CrossRefPubMedGoogle Scholar
  30. Langley JN (1895) Note on regeneration of prae-ganglionic fibres of the sympathetic. J Physiol 18(3):280–284CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lasek RJ, Dabrowski C, Nordlander R (1973) Analysis of axoplasmic RNA from invertebrate giant axons. Nat New Biol 244(136):162–165CrossRefPubMedGoogle Scholar
  32. Leu JI et al (2004) Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol 6(5):443–450CrossRefPubMedGoogle Scholar
  33. Leung KM et al (2006) Asymmetrical beta-actin mRNA translation in growth cones mediates attractive turning to netrin-1. Nat Neurosci 9(10):1247–1256CrossRefPubMedPubMedCentralGoogle Scholar
  34. Leung LC et al (2013) Coupling of NF-protocadherin signaling to axon guidance by cue-induced translation. Nat Neurosci 16(2):166–173CrossRefPubMedPubMedCentralGoogle Scholar
  35. Liu H et al (2005) Stabilization and enhancement of the antiapoptotic activity of mcl-1 by TCTP. Mol Cell Biol 25(8):3117–3126CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lowery LA, Van Vactor D (2009) The trip of the tip: understanding the growth cone machinery. Nat Rev Mol Cell Biol 10(5):332–343CrossRefPubMedPubMedCentralGoogle Scholar
  37. Mehlen P, Delloye-Bourgeois C, Chedotal A (2011) Novel roles for slits and netrins: axon guidance cues as anticancer targets? Nat Rev Cancer 11(3):188–197CrossRefPubMedGoogle Scholar
  38. Meyer RL (1998) Roger Sperry and his chemoaffinity hypothesis. Neuropsychologia 36(10):957–980CrossRefPubMedGoogle Scholar
  39. Miller KE, Sheetz MP (2004) Axonal mitochondrial transport and potential are correlated. J Cell Sci 117(Pt 13):2791–2804CrossRefPubMedGoogle Scholar
  40. Mori M et al (2004) Expression of apoptosis inhibitor protein Mcl1 linked to neuroprotection in CNS neurons. Cell Death Differ 11(11):1223–1233CrossRefPubMedGoogle Scholar
  41. Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148(6):1145–1159CrossRefPubMedPubMedCentralGoogle Scholar
  42. O'Donnell M, Chance RK, Bashaw GJ (2009) Axon growth and guidance: receptor regulation and signal transduction. Annu Rev Neurosci 32:383–412CrossRefPubMedPubMedCentralGoogle Scholar
  43. Ong CK et al (2012) Exome sequencing of liver fluke-associated cholangiocarcinoma. Nat Genet 44(6):690–693CrossRefPubMedGoogle Scholar
  44. Pagano G, Castello G (2012) Oxidative stress and mitochondrial dysfunction in Down syndrome. Adv Exp Med Biol 724:291–299CrossRefPubMedGoogle Scholar
  45. Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 133(3421):571–573CrossRefGoogle Scholar
  46. Pasquale EB (2010) Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer 10(3):165–180CrossRefPubMedPubMedCentralGoogle Scholar
  47. Pease SE, Segal RA (2014) Preserve and protect: maintaining axons within functional circuits. Trends Neurosci 37(10):572–582CrossRefPubMedPubMedCentralGoogle Scholar
  48. Perry RB et al (2012) Subcellular knockout of importin beta1 perturbs axonal retrograde signaling. Neuron 75(2):294–305CrossRefPubMedPubMedCentralGoogle Scholar
  49. Raper JA, Bastiani M, Goodman CS (1983) Pathfinding by neuronal growth cones in grasshopper embryos. I. Divergent choices made by the growth cones of sibling neurons. J Neurosci 3(1):20–30PubMedGoogle Scholar
  50. Rezaul K et al (2005) A systematic characterization of mitochondrial proteome from human T leukemia cells. Mol Cell Proteomics 4(2):169–181CrossRefPubMedGoogle Scholar
  51. Rho SB et al (2011) Anti-apoptotic protein TCTP controls the stability of the tumor suppressor p53. FEBS Lett 585(1):29–35CrossRefPubMedGoogle Scholar
  52. Roque CG et al (2016) Tumor protein Tctp regulates axon development in the embryonic visual system. Development 143(7):1134–1148CrossRefPubMedPubMedCentralGoogle Scholar
  53. Seo J, Maeng J, Kim HJ (2016) Translationally controlled tumor protein stimulates dopamine release from PC12 cells via Ca2+-independent phospholipase A(2) pathways. Int J Mol Sci 17(10)Google Scholar
  54. Serafini T et al (1996) Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 87(6):1001–1014CrossRefPubMedGoogle Scholar
  55. Sheng ZH, Cai Q (2012) Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat Rev Neurosci 13(2):77–93CrossRefPubMedPubMedCentralGoogle Scholar
  56. Sperry RW (1943) Visuomotor coordination in the newt (triturus viridescens) after regeneration of the optic nerve. J Comp Neurol 79(1):33–55CrossRefGoogle Scholar
  57. Sperry RW (1944) Optic nerve regeneration with return of vision in anurans. J Neurophysiol 7(1):57–69Google Scholar
  58. Sperry RW (1963) Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc Natl Acad Sci USA 50(4):703–710CrossRefPubMedPubMedCentralGoogle Scholar
  59. Susini L et al (2008) TCTP protects from apoptotic cell death by antagonizing bax function. Cell Death Differ 15(8):1211–1220CrossRefPubMedGoogle Scholar
  60. Taylor AM et al (2009) Axonal mRNA in uninjured and regenerating cortical mammalian axons. J Neurosci 29(15):4697–4707CrossRefPubMedPubMedCentralGoogle Scholar
  61. Tessier-Lavigne M, Goodman CS (1996) The molecular biology of axon guidance. Science 274(5290):1123–1133CrossRefPubMedGoogle Scholar
  62. Thiele H et al (2000) Expression of the gene and processed pseudogenes encoding the human and rabbit translationally controlled tumour protein (TCTP). Eur J Biochem 267(17):5473–5481CrossRefPubMedGoogle Scholar
  63. Valastyan S, Weinberg RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147(2):275–292CrossRefPubMedPubMedCentralGoogle Scholar
  64. van Kesteren RE et al (2006) Local synthesis of actin-binding protein beta-thymosin regulates neurite outgrowth. J Neurosci 26(1):152–157CrossRefPubMedGoogle Scholar
  65. Vaseva AV, Moll UM (2009) The mitochondrial p53 pathway. Biochim Biophys Acta 1787(5):414–420CrossRefPubMedGoogle Scholar
  66. Verma P et al (2005) Axonal protein synthesis and degradation are necessary for efficient growth cone regeneration. J Neurosci 25(2):331–342CrossRefPubMedPubMedCentralGoogle Scholar
  67. Weiss P (1936) Selectivity controlling the central-peripheral relations in the nervous system. Biol Rev 11(4):494–531CrossRefGoogle Scholar
  68. Wu KY et al (2005) Local translation of RhoA regulates growth cone collapse. Nature 436(7053):1020–1024CrossRefPubMedPubMedCentralGoogle Scholar
  69. Yang Y et al (2005) An N-terminal region of translationally controlled tumor protein is required for its antiapoptotic activity. Oncogene 24(30):4778–4788CrossRefPubMedPubMedCentralGoogle Scholar
  70. Yoon BC et al (2012) Local translation of extranuclear lamin B promotes axon maintenance. Cell 148(4):752–764CrossRefPubMedPubMedCentralGoogle Scholar
  71. Zhang D et al (2002) Physical and functional interaction between myeloid cell leukemia 1 protein (MCL1) and Fortilin. The potential role of MCL1 as a fortilin chaperone. J Biol Chem 277(40):37430–37438CrossRefPubMedGoogle Scholar
  72. Zipursky SL, Sanes JR (2010) Chemoaffinity revisited: dscams, protocadherins, and neural circuit assembly. Cell 143(3):343–353CrossRefPubMedGoogle Scholar
  73. Zivraj KH et al (2010) Subcellular profiling reveals distinct and developmentally regulated repertoire of growth cone mRNAs. J Neurosci 30(46):15464–15478CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia UniversityNew YorkUSA
  2. 2.Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK

Personalised recommendations