Advertisement

Introduction: How We Encountered TCTP and Our Purpose in Studying It

  • Adam TelermanEmail author
  • Robert Amson
Chapter
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 64)

Abstract

In this brief introduction, we describe our encounter with TCTP. Back in 2000, we discovered TCTP in two quite different ways: first, we looked at protein partners of TSAP6 and one of them was TCTP. Then, in collaboration with Sidney Brenner, we performed a high-throughput differential screening comparing the parental cancer cells with revertants. The results indicated that TCTP was of the most differentially expressed genes. These two approaches were carried out only months apart. They guided our research and led to the discoveries of drugs that inhibit the function of TCTP. Much of the preclinical data on sertraline as an inhibitor of TCTP in cancer were obtained with Judith Karp at Johns Hopkins. This drug is now given in combination with Ara-C to patients in a phase I clinical trial for Acute Myeloid Leukemia. We will here detail how all this happened in our lab while working around one central project: tumor reversion.

Notes

Acknowledgements

This work was supported by grants from the French National Agency for Research (ANR, ANR-09-BLAN-0292) to AT, RA, and MV; European Union Network of Excellence CONTICANET to AT and RA; LabEx LERMIT to AT and RA; INCa Projets libres de Recherche 2013-1-PL BIO-10 “Biologie et Sciences du Cancer” to AT and RA; Ligue Nationale Contre le Cancer to AT and RA; Odyssea fund to RA.

References

  1. Amson RB, Nemani M, Roperch JP, Israeli D, Bougueleret L, Le Gall I, Medhioub M, Linares-Cruz G, Lethrosne F, Pasturaud P et al (1996) Isolation of 10 differentially expressed cDNAs in p53-induced apoptosis: activation of the vertebrate homologue of the drosophila seven in absentia gene. Proc Natl Acad Sci U S A 93:3953–3957CrossRefPubMedPubMedCentralGoogle Scholar
  2. Amson R, Lassalle JM, Halley H, Prieur S, Lethrosne F, Roperch JP, Israeli D, Gendron MC, Duyckaerts C, Checler F et al (2000) Behavioral alterations associated with apoptosis and down-regulation of presenilin 1 in the brains of p53-deficient mice. Proc Natl Acad Sci U S A 97:5346–5350CrossRefPubMedPubMedCentralGoogle Scholar
  3. Amson R, Pece S, Lespagnol A, Vyas R, Mazzarol G, Tosoni D, Colaluca I, Viale G, Rodrigues-Ferreira S, Wynendaele J, Chaloin O, Hoebeke J, Christophe Marine J-C, Paolo Di Fiore P, Telerman A (2012a) Relevance of the repressive feedback loop between p53 and TCTP in stemness and cancer treatment. Mechanisms and models of cancer. Salk Institute for Biological Studies, La Jolla, CA, Aug 2011Google Scholar
  4. Amson R, Pece S, Lespagnol A, Vyas R, Mazzarol G, Tosoni D, Colaluca I, Viale G, Rodrigues-Ferreira S, Wynendaele J et al (2012b) Reciprocal repression between P53 and TCTP. Nat Med 18:91–99CrossRefGoogle Scholar
  5. Amson R, Karp JE, Telerman A (2013a) Lessons from tumor reversion for cancer treatment. Curr Opin Oncol 25:59–65CrossRefPubMedGoogle Scholar
  6. Amson R, Pece S, Marine JC, Di Fiore PP, Telerman A (2013b) TPT1/TCTP-regulated pathways in phenotypic reprogramming. Trends Cell Biol 23:37–46CrossRefPubMedGoogle Scholar
  7. Amzallag N, Passer BJ, Allanic D, Segura E, Thery C, Goud B, Amson R, Telerman A (2004) TSAP6 facilitates the secretion of translationally controlled tumor protein/histamine-releasing factor via a nonclassical pathway. J Biol Chem 279:46104–46112CrossRefPubMedGoogle Scholar
  8. Askanazy M (1907) Die Teratome nach ihrem Bau, ihrem Verlauf, ihrer Genese und im Vergleich zum experimentellen Teratoid. Verhandl Deutsch Pathol 11:39–82Google Scholar
  9. Bissell MJ, Labarge MA (2005) Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cell 7:17–23PubMedPubMedCentralGoogle Scholar
  10. Braun AC (1951) Recovery of tumor cells from effects of the tumor-inducing principle in crown gall. Science 113:651–653CrossRefPubMedGoogle Scholar
  11. Braun AC (1959) A demonstration of the recovery of the crown-gall tumor cell with the use of complex tumors of single-cell origin. Proc Natl Acad Sci U S A 45:932–938CrossRefPubMedPubMedCentralGoogle Scholar
  12. Braun AC (1965) The reversal of tumor growth. Sci Am 213:75–83CrossRefPubMedGoogle Scholar
  13. Brenner S, Williams SR, Vermaas EH, Storck T, Moon K, McCollum C, Mao JI, Luo S, Kirchner JJ, Eletr S et al (2000a) In vitro cloning of complex mixtures of DNA on microbeads: physical separation of differentially expressed cDNAs. Proc Natl Acad Sci U S A 97:1665–1670CrossRefPubMedPubMedCentralGoogle Scholar
  14. Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo S, McCurdy S, Foy M, Ewan M et al (2000b) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18:630–634CrossRefPubMedGoogle Scholar
  15. Brinster RL (1974) The effect of cells transferred into the mouse blastocyst on subsequent development. J Exp Med 140:1049–1056CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cans C, Passer BJ, Shalak V, Nancy-Portebois V, Crible V, Amzallag N, Allanic D, Tufino R, Argentini M, Moras D et al (2003) Translationally controlled tumor protein acts as a guanine nucleotide dissociation inhibitor on the translation elongation factor eEF1A. Proc Natl Acad Sci U S A 100:13892–13897CrossRefPubMedPubMedCentralGoogle Scholar
  17. Ge F, Zhang L, Tao SC, Kitazato K, Zhang ZP, Zhang XE, Bi LJ (2011) Quantitative proteomic analysis of tumor reversion in multiple myeloma cells. J Proteome Res 10:845–855CrossRefPubMedGoogle Scholar
  18. Hendrix MJ, Seftor EA, Seftor RE, Kasemeier-Kulesa J, Kulesa PM, Postovit LM (2007) Reprogramming metastatic tumour cells with embryonic microenvironments. Nat Rev Cancer 7:246–255CrossRefPubMedGoogle Scholar
  19. Lespagnol A, Duflaut D, Beekman C, Blanc L, Fiucci G, Marine JC, Vidal M, Amson R, Telerman A (2008) Exosome secretion, including the DNA damage-induced p53-dependent secretory pathway, is severely compromised in TSAP6/Steap3-null mice. Cell Death Differ 15:1723–1733CrossRefPubMedGoogle Scholar
  20. Li F, Zhang D, Fujise K (2001) Characterization of fortilin, a novel antiapoptotic protein. J Biol Chem 276:47542–47549CrossRefPubMedGoogle Scholar
  21. Liang P, Pardee AB (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–971CrossRefPubMedGoogle Scholar
  22. Linares-Cruz G, Bruzzoni-Giovanelli H, Alvaro V, Roperch JP, Tuynder M, Schoevaert D, Nemani M, Prieur S, Lethrosne F, Piouffre L et al (1998) p21WAF-1 reorganizes the nucleus in tumor suppression. Proc Natl Acad Sci U S A 95:1131–1135CrossRefPubMedPubMedCentralGoogle Scholar
  23. MacDonald SM, Rafnar T, Langdon J, Lichtenstein LM (1995) Molecular identification of an IgE-dependent histamine-releasing factor. Science 269:688–690CrossRefPubMedGoogle Scholar
  24. Macpherson I (1965) Reversion in hamster cells transformed by Rous sarcoma virus. Science 148:1731–1733CrossRefPubMedGoogle Scholar
  25. Mintz B, Illmensee K (1975) Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Natl Acad Sci U S A 72:3585–3589CrossRefPubMedPubMedCentralGoogle Scholar
  26. Mousset S, Rommelaere J (1982) Minute virus of mice inhibits cell transformation by simian virus 40. Nature 300:537–539CrossRefPubMedGoogle Scholar
  27. Nemani M, Linares-Cruz G, Bruzzoni-Giovanelli H, Roperch JP, Tuynder M, Bougueleret L, Cherif D, Medhioub M, Pasturaud P, Alvaro V et al (1996) Activation of the human homologue of the Drosophila sina gene in apoptosis and tumor suppression. Proc Natl Acad Sci U S A 93:9039–9042CrossRefPubMedPubMedCentralGoogle Scholar
  28. Passer BJ, Nancy-Portebois V, Amzallag N, Prieur S, Cans C, Roborel de Climens A, Fiucci G, Bouvard V, Tuynder M, Susini L et al (2003) The p53-inducible TSAP6 gene product regulates apoptosis and the cell cycle and interacts with nix and the Myt1 kinase. Proc Natl Acad Sci U S A 100:2284–2289CrossRefPubMedPubMedCentralGoogle Scholar
  29. Pierce GB, Dixon FJ Jr (1959) Testicular teratomas. I. Demonstration of teratogenesis by metamorphosis of multipotential cells. Cancer 12:573–583CrossRefPubMedGoogle Scholar
  30. Roperch JP, Alvaro V, Prieur S, Tuynder M, Nemani M, Lethrosne F, Piouffre L, Gendron MC, Israeli D, Dausset J et al (1998) Inhibition of presenilin 1 expression is promoted by p53 and p21WAF-1 and results in apoptosis and tumor suppression. Nat Med 4:835–838CrossRefPubMedGoogle Scholar
  31. Roperch JP, Lethrone F, Prieur S, Piouffre L, Israeli D, Tuynder M, Nemani M, Pasturaud P, Gendron MC, Dausset J et al (1999) SIAH-1 promotes apoptosis and tumor suppression through a network involving the regulation of protein folding, unfolding, and trafficking: identification of common effectors with p53 and p21(Waf1). Proc Natl Acad Sci U S A 96:8070–8073CrossRefPubMedPubMedCentralGoogle Scholar
  32. Susini L, Besse S, Duflaut D, Lespagnol A, Beekman C, Fiucci G, Atkinson AR, Busso D, Poussin P, Marine JC et al (2008) TCTP protects from apoptotic cell death by antagonizing bax function. Cell Death Differ 15:1211–1220CrossRefPubMedGoogle Scholar
  33. Telerman A, Amson R (2009) The molecular programme of tumour reversion: the steps beyond malignant transformation. Nat Rev Cancer 9:206–216CrossRefPubMedGoogle Scholar
  34. Telerman A, Tuynder M, Dupressoir T, Robaye B, Sigaux F, Shaulian E, Oren M, Rommelaere J, Amson R (1993a) A model for tumor suppression using H-1 parvovirus. In: 5th Parvovirus workshop, Crystal River, FL, USA, Nov 1993Google Scholar
  35. Telerman A, Tuynder M, Dupressoir T, Robaye B, Sigaux F, Shaulian E, Oren M, Rommelaere J, Amson R (1993b) Selection of a suppressed phenotype in a human leukemia by means of H-1 parvovirus. In: Ninth annual meeting on oncogenes, Frederick, MD, USA, June 1993Google Scholar
  36. Telerman A, Tuynder M, Dupressoir T, Robaye B, Sigaux F, Shaulian E, Oren M, Rommelaere J, Amson R (1993c) A model for tumor suppression using H-1 parvovirus. Proc Natl Acad Sci U S A 90:8702–8706CrossRefPubMedPubMedCentralGoogle Scholar
  37. Telerman A, Nemani M, Roperch JP, Cruz GL, Giovanelli HB, Alvaro V, Israeli D, Medhioub M, Bougueleret L, Cherif D, Le Paslier D, Le Gall I, Dausset J, Calvo F, Oren M, Cohen D, Amson R (1996) The human homologue of the Drosophila seven in absentia gene in apoptosis and tumor suppression. In: Twelfth annual meeting on oncogenes, Frederick, MD, USA, June 1996Google Scholar
  38. Thebault S, Agez M, Chi X, Stojko J, Cura V, Telerman SB, Maillet L, Gautier F, Billas-Massobrio I, Birck C et al (2016) TCTP contains a BH3-like domain, which instead of inhibiting, activates Bcl-xL. Sci Rep 6:19725CrossRefPubMedPubMedCentralGoogle Scholar
  39. Toolan HW (1967) Lack of oncogenic effect of the H-viruses for hamsters. Nature 214:1036CrossRefPubMedGoogle Scholar
  40. Tuynder M, Lethrosne F, Prieur S, Roperch JP, Susini L, Oren M, Telerman A (2000) Uncovering tumor suppression pathways by investigationg tumor reversion. In: Conference on cancer genetics and tumor suppressor genes. Cold Spring Harbor, Aug 2000Google Scholar
  41. Tuynder M, Susini L, Richardson J, Goodman L, Bowen B, Géant A, Oren M, Amson R, Telerman A (2001a) Characterization of biological models and molecular pathways of tumor reversion: cross-talk with programmed cell death. In: Conference on programmed cell death. Cold Spring Harbor, Sept 2001Google Scholar
  42. Tuynder M, Susini L, Richardson J, Goodman L, Géant A, Dufour F, Mas E, Zyto S, Tolédano J, Oren M, Brenner S, Amson R, Telerman A (2001b) Characterisation of biological models and molecular pathways of tumor reversion. In: Annual meeting on oncogenes, Frederick, MD, USA, June 2001Google Scholar
  43. Tuynder M, Susini L, Prieur S, Besse S, Fiucci G, Amson R, Telerman A (2002) Biological models and genes of tumor reversion: cellular reprogramming through tpt1/TCTP and SIAH-1. Proc Natl Acad Sci U S A 99:14976–14981CrossRefPubMedPubMedCentralGoogle Scholar
  44. Tuynder M, Fiucci G, Prieur S, Lespagnol A, Geant A, Beaucourt S, Duflaut D, Besse S, Susini L, Cavarelli J et al (2004) Translationally controlled tumor protein is a target of tumor reversion. Proc Natl Acad Sci U S A 101:15364–15369CrossRefPubMedPubMedCentralGoogle Scholar
  45. Weaver VM, Petersen OW, Wang F, Larabell CA, Briand P, Damsky C, Bissell MJ (1997) Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol 137:231–245CrossRefPubMedPubMedCentralGoogle Scholar
  46. Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M (1991) Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352:345–347CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Bâtiment B2M, Institut Gustave RoussyUnité Inserm U981VillejuifFrance

Personalised recommendations