Advertisement

Ranking-Based Rule Classifier Optimisation

  • Urszula Stańczyk
Chapter
Part of the Intelligent Systems Reference Library book series (ISRL, volume 138)

Abstract

Ranking is a strategy widely used for estimating relevance or importance of available characteristic features. Depending on the applied methodology, variables are assessed individually or as subsets, by some statistics referring to information theory, machine learning algorithms, or specialised procedures that execute systematic search through the feature space. The information about importance of attributes can be used in the pre-processing step of initial data preparation, to remove irrelevant or superfluous elements. It can also be employed in post-processing, for optimisation of already constructed classifiers. The chapter describes research on the latter approach, involving filtering inferred decision rules while exploiting ranking positions and scores of features. The optimised rule classifiers were applied in the domain of stylometric analysis of texts for the task of binary authorship attribution.

Keywords

Attribute Ranking Rule classifier DRSA Stylometry Authorship attribution 

Notes

Acknowledgements

In the research there was used WEKA workbench [40]. 4eMka Software exploited for DRSA processing [32] was developed at the Laboratory of Intelligent Decision Support Systems, Poznań, Poland. The research was performed at the Silesian University of Technology, Gliwice, within the project BK/RAu2/2017.

References

  1. 1.
    Ahonen, H., Heinonen, O., Klemettinen, M., Verkamo, A.: Applying data mining techniques in text analysis. Technical report C-1997-23, Department of Computer Science, University of Helsinki, Finland (1997)Google Scholar
  2. 2.
    Argamon, S., Burns, K., Dubnov, S. (eds.): The Structure of Style: Algorithmic Approaches to Understanding Manner and Meaning. Springer, Berlin (2010)Google Scholar
  3. 3.
    Argamon, S., Karlgren, J., Shanahan, J.: Stylistic analysis of text for information access. In: Proceedings of the 28th International ACM Conference on Research and Development in Information Retrieval, Brazil (2005)Google Scholar
  4. 4.
    Baayen, H., van Haltern, H., Tweedie, F.: Outside the cave of shadows: using syntactic annotation to enhance authorship attribution. Lit. Linguist. Comput. 11(3), 121–132 (1996)CrossRefGoogle Scholar
  5. 5.
    Baron, G.: Comparison of cross-validation and test sets approaches to evaluation of classifiers in authorship attribution domain. In: Czachórski, T., Gelenbe, E., Grochla, K., Lent, R. (eds.) Proceedings of the 31st International Symposium on Computer and Information Sciences, Communications in Computer and Information Science, vol. 659, pp. 81–89. Springer, Cracow (2016)Google Scholar
  6. 6.
    Bayardo Jr., R., Agrawal, R.: Mining the most interesting rules. In: Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 145–154 (1999)Google Scholar
  7. 7.
    Biesiada, J., Duch, W., Kachel, A., Pałucha, S.: Feature ranking methods based on information entropy with Parzen windows. In: Proceedings of International Conference on Research in Electrotechnology and Applied Informatics, pp. 109–119, Katowice (2005)Google Scholar
  8. 8.
    Craig, H.: Stylistic analysis and authorship studies. In: Schreibman, S., Siemens, R., Unsworth, J. (eds.) A Companion to Digital Humanities. Blackwell, Oxford (2004)Google Scholar
  9. 9.
    Dash, M., Liu, H.: Feature selection for classification. Intelligent Data Analysis 1, 131–156 (1997)CrossRefGoogle Scholar
  10. 10.
    Deuntsch, I., Gediga, G.: Rough Set Data Analysis: A Road to Noninvasive Knowledge Discovery. Matho\(\delta \)os Publishers, Bangor (2000)Google Scholar
  11. 11.
    Fiesler, E., Beale, R.: Handbook of Neural Computation. Oxford University Press, Oxford (1997)CrossRefzbMATHGoogle Scholar
  12. 12.
    Greco, S., Matarazzo, B., Słowiński, R.: The use of rough sets and fuzzy sets in multi criteria decision making. In: Gal, T., Hanne, T., Stewart, T. (eds.) Advances in Multiple Criteria Decision Making, Chap. 14, pp. 14.1–14.59. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  13. 13.
    Greco, S., Matarazzo, B., Słowiński, R.: Rough set theory for multicriteria decision analysis. Eur. J. Oper. Res. 129(1), 1–47 (2001)CrossRefzbMATHGoogle Scholar
  14. 14.
    Greco, S., Matarazzo, B., Słowiński, R.: Dominance-based rough set approach as a proper way of handling graduality in rough set theory. Trans. Rough Sets VII 4400, 36–52 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Greco, S., Słowiński, R., Stefanowski, J.: Evaluating importance of conditions in the set of discovered rules. Lect. Notes Artif. Intell. 4482, 314–321 (2007)Google Scholar
  16. 16.
    Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)zbMATHGoogle Scholar
  17. 17.
    Holte, R.: Very simple classification rules perform well on most commonly used datasets. Mach. Learn. 11, 63–91 (1993)CrossRefzbMATHGoogle Scholar
  18. 18.
    Jensen, R., Shen, Q.: Computational Intelligence and Feature Selection. Wiley, Hoboken (2008)CrossRefGoogle Scholar
  19. 19.
    Jockers, M., Witten, D.: A comparative study of machine learning methods for authorship attribution. Lit. Linguist. Comput. 25(2), 215–223 (2010)CrossRefGoogle Scholar
  20. 20.
    John, G., Kohavi, R., Pfleger, K.: Irrelevant features and the subset selection problem. In: Cohen, W., Hirsh, H. (eds.) Machine Learning: Proceedings of the 11th International Conference, pp. 121–129. Morgan Kaufmann Publishers (1994)Google Scholar
  21. 21.
    Khmelev, D., Tweedie, F.: Using Markov chains for identification of writers. Lit. Linguist. Comput. 16(4), 299–307 (2001)CrossRefGoogle Scholar
  22. 22.
    Koppel, M., Argamon, S., Shimoni, A.: Automatically categorizing written texts by author gender. Lit. Linguist. Comput. 17(4), 401–412 (2002)CrossRefGoogle Scholar
  23. 23.
    Liu, H., Motoda, H.: Computational Methods of Feature Selection. Chapman & Hall/CRC, Boca Raton (2008)zbMATHGoogle Scholar
  24. 24.
    Lynam, T., Clarke, C., Cormack, G.: Information extraction with term frequencies. In: Proceedings of the Human Language Technology Conference, pp. 1–4. San Diego (2001)Google Scholar
  25. 25.
    Moshkov, M., Piliszczuk, M., Zielosko, B.: On partial covers, reducts and decision rules with weights. Trans. Rough Sets VI 4374, 211–246 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Pawlak, Z.: Computing, artificial intelligence and information technology: rough sets, decision algorithms and Bayes’ theorem. Eur. J. Oper. Res. 136, 181–189 (2002)CrossRefzbMATHGoogle Scholar
  27. 27.
    Pawlak, Z.: Rough sets and intelligent data analysis. Inf. Sci. 147, 1–12 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Peng, R.: Statistical aspects of literary style. Bachelor’s thesis, Yale University (1999)Google Scholar
  29. 29.
    Peng, R., Hengartner, H.: Quantitative analysis of literary styles. Am. Stat. 56(3), 15–38 (2002)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Shen, Q.: Rough feature selection for intelligent classifiers. Trans. Rough Sets VII 4400, 244–255 (2006)CrossRefGoogle Scholar
  31. 31.
    Sikora, M.: Rule quality measures in creation and reduction of data rule models. In: Greco, S., Hata, Y., Hirano, S., Inuiguchi, M., Miyamoto, S., Nguyen, H., Słowiński, R. (eds.) Rough Sets and Current Trends in Computing, Lecture Notes in Computer Science, vol. 4259, pp. 716–725. Springer, Berlin (2006)Google Scholar
  32. 32.
    Słowiński, R., Greco, S., Matarazzo, B.: Dominance-based rough set approach to reasoning about ordinal data. Lect. Notes Comput. Sci. (Lect. Notes Artif. Intell.) 4585, 5–11 (2007)CrossRefGoogle Scholar
  33. 33.
    Stamatatos, E.: A survey of modern authorship attribution methods. J. Am. Soc. Inf. Sci. Technol. 60(3), 538–556 (2009)CrossRefGoogle Scholar
  34. 34.
    Stańczyk, U.: Weighting of attributes in an embedded rough approach. In: Gruca, A., Czachórski, T., Kozielski, S. (eds.) Man-Machine Interactions 3, Advances in Intelligent and Soft Computing, vol. 242, pp. 475–483. Springer, Berlin (2013)Google Scholar
  35. 35.
    Stańczyk, U.: Attribute ranking driven filtering of decision rules. In: Kryszkiewicz, M., Cornelis, C., Ciucci, D., Medina-Moreno, J., Motoda, H., Raś, Z. (eds.) Rough Sets and Intelligent Systems Paradigms. Lecture Notes in Computer Science, vol. 8537, pp. 217–224. Springer, Berlin (2014)Google Scholar
  36. 36.
    Stańczyk, U.: Feature evaluation by filter, wrapper and embedded approaches. In: Stańczyk, U., Jain, L. (eds.) Feature Selection for Data and Pattern Recognition. Studies in Computational Intelligence, vol. 584, pp. 29–44. Springer, Berlin (2015)Google Scholar
  37. 37.
    Stańczyk, U.: Selection of decision rules based on attribute ranking. J. Intell. Fuzzy Syst. 29(2), 899–915 (2015)CrossRefMathSciNetGoogle Scholar
  38. 38.
    Stańczyk, U.: The class imbalance problem in construction of training datasets for authorship attribution. In: Gruca, A., Brachman, A., Kozielski, S., Czachórski, T. (eds.) Man-Mach. Interact. 4. Advances in Intelligent and Soft Computing, vol. 391, pp. 535–547. Springer, Berlin (2016)Google Scholar
  39. 39.
    Stańczyk, U.: Weighting and pruning of decision rules by attributes and attribute rankings. In: Czachórski, T., Gelenbe, E., Grochla, K., Lent, R. (eds.) Proceedings of the 31st International Symposium on Computer and Information Sciences, Communications in Computer and Information Science, vol. 659, pp. 106–114. Springer, Cracow (2016)Google Scholar
  40. 40.
    Witten, I., Frank, E., Hall, M.: Data Mining: Practical Machine Learning Tools and Techniques, 3rd edn. Morgan Kaufmann, San Francisco (2011)Google Scholar
  41. 41.
    Wróbel, L., Sikora, M., Michalak, M.: Rule quality measures settings in classification, regression and survival rule induction – an empirical approach. Fundamenta Informaticae 149, 419–449 (2016)CrossRefMathSciNetGoogle Scholar
  42. 42.
    Zielosko, B.: Application of dynamic programming approach to optimization of association rules relative to coverage and length. Fundamenta Informaticae 148(1–2), 87–105 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    Zielosko, B.: Optimization of decision rules relative to coverage–comparison of greedy and modified dynamic programming approaches. In: Gruca, A., Brachman, A., Kozielski, S., Czachórski, T. (eds.) Man-Machine Interactions 4. Advances in Intelligent and Soft Computing, vol. 391, pp. 639–650. Springer, Berlin (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of InformaticsSilesian University of TechnologyGliwicePoland

Personalised recommendations