Advances in Feature Selection for Data and Pattern Recognition: An Introduction

  • Urszula StańczykEmail author
  • Beata Zielosko
  • Lakhmi C. Jain
Part of the Intelligent Systems Reference Library book series (ISRL, volume 138)


Technological progress of the ever evolving world is connected with the need of developing methods for extracting knowledge from available data, distinguishing variables that are relevant from irrelevant, and reduction of dimensionality by selection of the most informative and important descriptors. As a result, the field of feature selection for data and pattern recognition is studied with such unceasing intensity by researchers, that it is not possible to present all facets of their investigations. The aim of this chapter is to provide a brief overview of some recent advances in the domain, presented as chapters included in this monograph.


Feature selection Pattern recognition Data mining 


  1. 1.
    Abraham, A., Falcón, R., Bello, R. (eds.): Rough Set Theory: A True Landmark in Data Analysis, Studies in Computational Intelligence, vol. 174. Springer, Heidelberg (2009)Google Scholar
  2. 2.
    Ahmad, M., Peters, J.: Delta complexes in digital images. Approximating image object shapes, 1–18 (2017). arXiv:170604549v1
  3. 3.
    Bertini Jr., J.R., Nicoletti, M.C., Zhao, L.: An embedded imputation method via attribute-based decision graphs. Expert Syst. Appl. 57(C), 159–177 (2016)Google Scholar
  4. 4.
    Bi, W., Kwok, J.: Multi-label classification on tree- and dag-structured hierarchies. In: Getoor, L., Scheffer, T. (eds.) Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 17–24. ACM, New York, NY, USA (2011)Google Scholar
  5. 5.
    Błaszczyński, J., Stefanowski, J.: Actively balanced bagging for imbalanced data. In: Kryszkiewicz, M., Appice, A., Ślȩzak, D., Rybiński, H., Skowron, A., Raś, Z.W. (eds.) Foundations of Intelligent Systems - 23rd International Symposium, ISMIS 2017, Warsaw, Poland, June 26–29, 2017, Proceedings. Lecture Notes in Computer Science, vol. 10352, pp. 271–281. Springer, Cham (2017)Google Scholar
  6. 6.
    Branco, P., Torgo, L., Ribeiro, R.P.: A survey of predictive modeling on imbalanced domains. ACM Comput. Surv. 49(2), 31:1–31:50 (2016)CrossRefGoogle Scholar
  7. 7.
    Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)zbMATHGoogle Scholar
  8. 8.
    Deuntsch, I., Gediga, G.: Rough set data analysis: a road to noninvasive knowledge discovery. Matho\(\delta \)os Publishers, Bangor (2000)Google Scholar
  9. 9.
    Dorigo, M., Gambardella, L.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evolut. Comput. 1(1), 53–66 (1997)Google Scholar
  10. 10.
    Fayyad, U.M., Irani, K.B.: On the handling of continuous-valued attributes in decision tree generation. Mach. Learn. 8(1), 87–102 (1992)zbMATHGoogle Scholar
  11. 11.
    Fiesler, E., Beale, R.: Handbook of Neural Computation. Oxford University Press, Oxford (1997)Google Scholar
  12. 12.
    Goodwin, S., Dykes, J., Slingsby, A., Turkay, C.: Visualizing multiple variables across scale and geography. IEEE Trans. Visual Comput. Graphics 22(1), 599–608 (2016)CrossRefGoogle Scholar
  13. 13.
    Grzymała-Busse, J.W.: Data reduction: discretization of numerical attributes. In: Klösgen, W., Zytkow, J.M. (eds.) Handbook of Data Mining and Knowledge Discovery, pp. 218–225. Oxford University Press Inc., New York (2002)Google Scholar
  14. 14.
    Guyon, I.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)zbMATHGoogle Scholar
  15. 15.
    Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L. (eds.): Feature Extraction: Foundations and Applications. Springer, Heidelberg (2006)Google Scholar
  16. 16.
    Guyon, I., Gunn, S.R., Asa, B., Dror, G.: Result analysis of the NIPS 2003 feature selection challenge. In: Proceedings of the 17th International Conference on Neural Information Processing Systems, pp. 545–552 (2004)Google Scholar
  17. 17.
    Jensen, R., Shen, Q.: Computational Intelligence and Feature Selection. Wiley, Hoboken (2008)CrossRefGoogle Scholar
  18. 18.
    Kharrat, A., Halima, M.B., Ayed, M.B.: MRI brain tumor classification using support vector machines and meta-heuristic method. In: 15th International Conference on Intelligent Systems Design and Applications, ISDA 2015, Marrakech, Morocco, December 14–16, 2015, pp. 446–451. IEEE (2015)Google Scholar
  19. 19.
    Liu, H., Motoda, H.: Computational Methods of Feature Selection. Chapman & Hall/CRC, Boca Raton (2008)zbMATHGoogle Scholar
  20. 20.
    Meszlényi, R., Peska, L., Gál, V., Vidnyánszky, Z., Buza, K.: Classification of fMRI data using dynamic time warping based functional connectivity analysis. In: 2016 24th European Conference on Signal Processing (EUSIPCO), pp. 245–249. IEEE (2016)Google Scholar
  21. 21.
    Moshkov, M., Zielosko, B.: Combinatorial Machine Learning - A Rough Set Approach, Studies in Computational Intelligence, vol. 360. Springer, Heidelberg (2011)CrossRefzbMATHGoogle Scholar
  22. 22.
    Nowak-Brzezińska, A.: Mining rule-based knowledge bases inspired by rough set theory. Fundamenta Informaticae 148, 35–50 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Opelt, A., Pinz, A., Zisserman, A.: Learning an alphabet of shape and appearance for multi-class object detection. Int. J. Comput. Vis. 80(1), 16–44 (2008)CrossRefGoogle Scholar
  24. 24.
    Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)CrossRefzbMATHGoogle Scholar
  25. 25.
    Przybyła-Kasperek, M., Wakulicz-Deja, A.: A dispersed decision-making system - the use of negotiations during the dynamic generation of a system’s structure. Inf. Sci. 288(C), 194–219 (2014)Google Scholar
  26. 26.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., San Francisco (1993)Google Scholar
  27. 27.
    Ramanna, S., Singh, A.: Tolerance-based approach to audio signal classification. In: Khoury, R., Drummond, C. (eds.) Advances in Artificial Intelligence: 29th Canadian Conference on Artificial Intelligence, Canadian AI 2016, Victoria, BC, Canada, May 31–June 3, 2016, Proceedings, pp. 83–88. Springer, Cham (2016)Google Scholar
  28. 28.
    Raś, Z.W., Dardzinska, A.: From data to classification rules and actions. Int. J. Intell. Syst. 26(6), 572–590 (2011)CrossRefGoogle Scholar
  29. 29.
    Rissanen, J.: Modeling by shortest data description. Automatica 14(5), 465–471 (1978)CrossRefzbMATHGoogle Scholar
  30. 30.
    Rudnicki, W.R., Wrzesień, M., Paja, W.: All relevant feature selection methods and applications. In: Stańczyk, U., Jain, L.C. (eds.) Feature Selection for Data and Pattern Recognition, pp. 11–28. Springer, Heidelberg (2015)Google Scholar
  31. 31.
    Stańczyk, U.: Selection of decision rules based on attribute ranking. J. Intell. Fuzzy Syst. 29(2), 899–915 (2015)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Stańczyk, U.: Weighting and pruning of decision rules by attributes and attribute rankings. In: Czachórski, T.., Gelenbe, E.., Grochla, K., Lent, R. (eds.) Proceedings of the 31st International Symposium on Computer and Information Sciences, Communications in Computer and Information Science, vol. 659, pp. 106–114. Springer, Cracow (2016)Google Scholar
  33. 33.
    Stańczyk, U., Jain, L. (eds.): Feature Selection for Data and Pattern Recognition, Studies in Computational Intelligence, vol. 584. Springer, Heidelberg (2015)Google Scholar
  34. 34.
    Szczuko, P.: Real and imaginary motion classification based on rough set analysis of EEG signals for multimedia applications. Multimed. Tools Appl. (2017)Google Scholar
  35. 35.
    Tadel, F., Baillet, S., Mosher, J.C., Pantazis, D., Leahy, R.M.: Brainstorm: a user-friendly application for MEG/EEG analysis. Intell. Neuroscience 2011(8), 8:1–8:13 (2011)Google Scholar
  36. 36.
    Utracki, J.: Building management system—artificial intelligence elements in ambient living driving and ant programming for energy saving—alternative approach. In: Piȩtka, E., Badura, P., Kawa, J., Wieclawek, W. (eds.) 5th International Conference on Information Technologies in Medicine, ITIB 2016 Kamień Śla̧ski, Poland, June 20–22, 2016 Proceedings, vol. 2, pp. 109–120. Springer, Cham (2016)Google Scholar
  37. 37.
    Wolski, M.: Toward foundations of near sets: (pre-)sheaf theoretic approach. Math. Comput. Sci. 7(1), 125–136 (2013)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Urszula Stańczyk
    • 1
    Email author
  • Beata Zielosko
    • 2
  • Lakhmi C. Jain
    • 3
  1. 1.Institute of InformaticsSilesian University of TechnologyGliwicePoland
  2. 2.Institute of Computer ScienceUniversity of Silesia in KatowiceSosnowiecPoland
  3. 3.University of CanberraCanberraAustralia

Personalised recommendations