A Semantic Approach to Enrich User Experience in Museums Through Indoor Positioning

  • Jaime Duque DomingoEmail author
  • Carlos Cerrada
  • Enrique Valero
  • J. A. Cerrada
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10586)


This article presents a novel ontology aiming to connect an Indoor Positioning System (IPS) to Europeana, the European Union digital platform for cultural heritage. The main purpose of this system is to deliver information about Cultural Heritage Objects (CHO) to users navigating in museums, when they approach certain pieces of art. Although different semantic works have been previously published regarding the problem of finding optimal paths with IPS, the novelty of this work is the combination of indoor positioning and a semantic view of cultural objects. This ontology enriches the experience of users and offers a new way of enjoying art. The paper shows the effectiveness of the proposed ontology to connect a widely known database to a wireless positioning system. The potential of the developed method is shown using data obtained from the Royal Museums of Fine Arts of Belgium, one of the most important European art galleries, with more than six thousand master pieces listed in Europeana. Some experiments have been also carried out in the Old masters Museum, one of the constituent museums of the Royal Museums that is dedicated to European painters from the \(15^{th}\) to the \(18^{th}\) centuries.


Indoor positioning WPS RGB-D sensors WiFi positioning fingerprint depth map OWL Ontology SPARQL Ubiquitous computing User experience Europeana Royal Museums of Fine Arts of Belgium 



This work has been developed with the help of the research projects DPI2013-44776-R and DPI2016-77677-P of MICINN. It also belongs to the activities carried out within the framework of the research network CAM RoboCity2030 S2013/MIT-2748 of Comunidad de Madrid.


  1. 1.
    Android Location API. Android Developers Application Programming Interface.
  2. 2.
    Android Location Strategies. Android Developers Application Programming Interface.
  3. 3.
    Apache Jena Server. Apache.
  4. 4.
    Google Maps Geolocation API. Google Maps Application Programming Interface.
  5. 5.
    Google Play Services Location APIs. Google Play Services Application Programming Interface.
  6. 6.
    Barmpoutis, A.: Tensor body: real-time reconstruction of the human body and avatar synthesis from RGB-D. IEEE Trans. Cybern. 43(5), 1347–1356 (2013)CrossRefGoogle Scholar
  7. 7.
    Consortium, O.G., et al.: Ogc geosparql-a geographic query language for RDF Data. OGC Candidate Implementation Standard 2 (2012)Google Scholar
  8. 8.
    Consortium, W.W.W., et al.: Owl 2 web ontology language document overview (2012)Google Scholar
  9. 9.
    Deak, G., Curran, K., Condell, J.: A survey of active and passive indoor localisation systems. Comput. Commun. 35(16), 1939–1954 (2012)CrossRefGoogle Scholar
  10. 10.
    Dodds, L.: Sparql geo extensions (2006)Google Scholar
  11. 11.
    Dudas, P.M., Ghafourian, M., Karimi, H.A.: ONALIN: ontology and algorithm for indoor routing. In: Tenth International Conference on Mobile Data Management: Systems, Services and Middleware, MDM 2009, pp. 720–725. IEEE (2009)Google Scholar
  12. 12.
    Duque Domingo, J., Cerrada, C., Valero, E., Cerrada, J.: Indoor positioning system using depth maps and wireless networks. J. Sens. 2016 (2016)Google Scholar
  13. 13.
    Duque-Domingo, J., Herrera, P.J., Valero, E., Cerrada, C.: Deciphering egyptian hieroglyphs: towards a new strategy for navigation in museums. Sensors 17(3), 589 (2017)CrossRefGoogle Scholar
  14. 14.
    Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing. Int. J. Hum. Comput. Stud. 43(5–6), 907–928 (1995)CrossRefGoogle Scholar
  15. 15.
    Guber, T.: A translational approach to portable ontologies. Knowl. Acquisit. 5(2), 199–229 (1993)CrossRefGoogle Scholar
  16. 16.
    Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)CrossRefGoogle Scholar
  17. 17.
    Isaac, A., Haslhofer, B.: Europeana linked open data ( Semant. Web 4(3), 291–297 (2013)Google Scholar
  18. 18.
    Lee, K., Lee, J., Kwan, M.P.: Location-based service using ontology-based semantic queries: a study with a focus on indoor activities in a university context. Comput. Environ. Urban Syst. 62, 41–52 (2017)CrossRefGoogle Scholar
  19. 19.
    Liu, W., Chen, Y., Xiong, Y., Sun, L., Zhu, H.: Optimization of sampling cell size for fingerprint positioning. Int. J. Distrib. Sens. Netw. 2014 (2014)Google Scholar
  20. 20.
    Matuszka, T., Gombos, G., Kiss, A.: A new approach for indoor navigation using semantic webtechnologies and augmented reality. In: Shumaker, R. (ed.) VAMR 2013. LNCS, vol. 8021, pp. 202–210. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39405-8_24 CrossRefGoogle Scholar
  21. 21.
    de Mendoza, J., et al.: Memoria sobre algunos métodos nuevos de calcular la longitud por las distancias lunares: y aplicación de su teórica a la solución de otros problemas de navegación. En la Imprenta real (1795)Google Scholar
  22. 22.
    Nakano, Y., Izutsu, K., Tajitsu, K., Kai, K., Tatsumi, T.: Kinect positioning system (kps) and its potential applications. In: International Conference on Indoor Positioning and Indoor Navigation, vol. 13, p. 15 (2012)Google Scholar
  23. 23.
    Prud’hommeaux, E., Buil-Aranda, C., et al.: SPARQL 1.1 federated query. W3C Recommendation 21 (2013)Google Scholar
  24. 24.
    Saputra, M.R.U., Widyawan, W., Putra, G.D., Santosa, P.I.: Indoor human tracking application using multiple depth-cameras. In: 2012 International Conference on Advanced Computer Science and Information Systems (ICACSIS), pp. 307–312. IEEE (2012)Google Scholar
  25. 25.
    Seaborne, A.: ARQ-A SPARQL Processor for Jena. Obtained through the Internet (2010).
  26. 26.
    Sevrin, L., Noury, N., Abouchi, N., Jumel, F., Massot, B., Saraydaryan, J.: Characterization of a multi-user indoor positioning system based on low cost depth vision (kinect) for monitoring human activity in a smart home. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5003–5007. IEEE (2015)Google Scholar
  27. 27.
    Shotton, J., Sharp, T., Kipman, A., Fitzgibbon, A., Finocchio, M., Blake, A., Cook, M., Moore, R.: Real-time human pose recognition in parts from single depth images. Commun. ACM 56(1), 116–124 (2013)CrossRefGoogle Scholar
  28. 28.
    Tsetsos, V., Anagnostopoulos, C., Kikiras, P., Hasiotis, P., Hadjiefthymiades, S.: A human-centered semantic navigation system for indoor environments. In: Proceedings of the International Conference on Pervasive Services, ICPS 2005, pp. 146–155. IEEE (2005)Google Scholar
  29. 29.
    Vincenty, T.: Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Surv. Rev. 23(176), 88–93 (1975)CrossRefGoogle Scholar
  30. 30.
    Williams, G.: Extensible SPARQL functions with embedded Javascript. In: SFSW (2007)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jaime Duque Domingo
    • 1
    Email author
  • Carlos Cerrada
    • 1
  • Enrique Valero
    • 2
  • J. A. Cerrada
    • 1
  1. 1.Departamento de Ingeniería de Software y Sistemas InformáticosUNED, ETSI InformáticaMadridSpain
  2. 2.School of Energy, Geoscience, Infrastructure and SocietyHeriot-Watt UniversityEdinburghUK

Personalised recommendations