Skip to main content

Lipid Inflammatory Mediators in Cancer Progression and Therapy

  • Chapter
  • First Online:
Tumor Immune Microenvironment in Cancer Progression and Cancer Therapy

Abstract

Rodent and clinical studies have documented that myeloid cell infiltration of tumors is associated with neutrophilia, lymphocytopenia and poor patient outcomes. This contrasts with lymphocyte infiltration of tumors, which is associated with improved outcomes. Lifestyle parameters such as high fat diet s and omega (ω)-6 polyunsaturated fatty acids (PUFA) intake may influence these inflammatory parameters including extramedullary myelopoiesis that can contribute to a metastatic “niche”. While, tumor secretion of growth factors (GFs) and chemokines regulate tumor-immune-cell crosstalk, in this chapter, we also emphasize how lifestyle choices, including, obesity, high-fat and high ω-6 PUFA dietary content, contribute to inflammation and myeloid cell infiltration of tumors. A relationship between obesity and high-fat diets (notably the saturated fats in Western diets) and tumor incidence, metastasis, and poor outcomes is generally accepted. However, the mechanisms of dietary promotion of inflammatory microenvironments and targeted drugs to inhibit the clinical sequel remain an unmet challenge. One approach, modification of dietary intake may have a preventative or therapeutic approach to regulate tumor-associated inflammation and remains an attractive, but little studied intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Eccles SA, Alexander P. Macrophage content of tumours in relation to metastatic spread and host immune reaction. Nature. 1974;250:667–9.

    Article  CAS  PubMed  Google Scholar 

  2. Gauci GL, Alexander P. The macrophage content of some human tumors. Cancer Lett. 1975;1:29.

    Article  CAS  PubMed  Google Scholar 

  3. Key M, Talmadge JE, Fidler IJ. Lack of correlation between the progressive growth of spontaneous metastases and their content of infiltrating macrophages. J Reticuloendothel Soc. 1982;32:387–96.

    CAS  PubMed  Google Scholar 

  4. Evans R, Lawler EM. Macrophage content and immunogenicity of C57BL/6J and BALB/cByJ methylcholanthrene-induced sarcomas. Int J Cancer. 1980;26:831–5.

    Article  CAS  PubMed  Google Scholar 

  5. Steele RJ, Eremin O, Brown M, Hawkins RA. A high macrophage content in human breast cancer is not associated with favourable prognostic factors. Br J Surg. 1984;71:456–8.

    Article  CAS  PubMed  Google Scholar 

  6. Sun XF, Zhang H. Clinicopathological significance of stromal variables: angiogenesis, lymphangiogenesis, inflammatory infiltration. MMP and PINCH in colorectal carcinomas. Mol Cancer. 2006;5:43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 2004;4:71–8.

    Article  CAS  PubMed  Google Scholar 

  8. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–44.

    Article  CAS  PubMed  Google Scholar 

  9. Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol. 2009;27:451–83.

    Article  CAS  PubMed  Google Scholar 

  10. Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol. 2009;86:1065–73.

    Article  CAS  PubMed  Google Scholar 

  11. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5:953–64.

    Article  CAS  PubMed  Google Scholar 

  12. Goerdt S, Orfanos CE. Other functions, other genes: alternative activation of antigen-presenting cells. Immunity. 1999;10:137–42.

    Article  CAS  PubMed  Google Scholar 

  13. Mantovani A, Sica A, Locati M. Macrophage polarization comes of age. Immunity. 2005;23:344–6.

    Article  CAS  PubMed  Google Scholar 

  14. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9:162–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Alexander P, Eccles SA, Gauci CL. The significance of macrophages in human and experimental tumors. Ann N Y Acad Sci. 1976;276:124–33.

    Article  CAS  PubMed  Google Scholar 

  16. Sinha P. Interleukin-13-regulated M2 macrophages in combination with myeloid suppressor cells block immune surveillance against metastasis. Cancer Res. 2005;65:11743–51.

    Article  CAS  PubMed  Google Scholar 

  17. Karanikas V, Zamanakou M, Soukou F, Kerenidi T, Gourgoulianis KI, Germenis AE. Naturally occurring tumor-specific CD8+ T-cell precursors in individuals with and without cancer. Immunol Cell Biol. 2010;88:575–85.

    Article  PubMed  Google Scholar 

  18. Gervois N, Guilloux Y, Diez E, Jotereau F. Suboptimal activation of melanoma infiltrating lymphocytes (TIL) due to low avidity of TCR/MHC-tumor peptide interactions. J Exp Med. 1996;183:2403–7.

    Article  CAS  PubMed  Google Scholar 

  19. Kawai O, Ishii G, Kubota K, Murata Y, Naito Y, Mizuno T, Aokage K, Saijo N, Nishiwaki Y, Gemma A, Kudoh S, Ochiai A. Predominant infiltration of macrophages and CD8(+) T Cells in cancer nests is a significant predictor of survival in stage IV nonsmall cell lung cancer. Cancer. 2008;113:1387–95.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, Gray H, Schlienger K, Liebman MN, Rubin SC, Coukos G. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003;348:203–13.

    Article  CAS  PubMed  Google Scholar 

  21. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10(9):942.

    Article  CAS  PubMed  Google Scholar 

  22. Menon AG, Janssen-van Rhijn CM, Morreau H, Putter H, Tollenaar RA, van de Velde CJ, Fleuren GJ, Kuppen PJ. Immune system and prognosis in colorectal cancer: a detailed immunohistochemical analysis. Lab Invest. 2004;84:493–501.

    Article  CAS  PubMed  Google Scholar 

  23. Naito Y, Saito K, Shiiba K, Ohuchi A, Saigenji K, Nagura H, Ohtani H. CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res. 1998;58:3491–4.

    CAS  PubMed  Google Scholar 

  24. Piersma SJ, Jordanova ES, van Poelgeest MIE, Kwappenberg KMC, van der Hulst JM, Drijfhout JW, Melief CJM, Kenter GG, Fleuren GJ, Offringa R, van der Burg SH. High number of intraepithelial CD8+ tumor-infiltrating lymphocytes is associated with the absence of lymph node metastases in patients with large early-stage cervical cancer. Cancer Res. 2007;67:354–61.

    Article  CAS  PubMed  Google Scholar 

  25. Nakano O, Sato M, Naito Y, Suzuki K, Orikasa S, Aizawa M, Suzuki Y, Shintaku I, Nagura H, Ohtani H. Proliferative activity of intratumoral CD8(+) T-lymphocytes as a prognostic factor in human renal cell carcinoma: clinicopathologic demonstration of antitumor immunity. Cancer Res. 2001;61:5132–6.

    CAS  PubMed  Google Scholar 

  26. Pagès F, Galon J, Dieu-Nosjean MC, Tartour E, Sautès-Fridman C, Fridman WH. Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene. 2009;29:1093–102.

    Article  PubMed  Google Scholar 

  27. Gorgun G, Samur MK, Cowens KB, Paula S, Bianchi G, Anderson JE, White RE, Singh A, Ohguchi H, Suzuki R, Kikuchi S, Harada T, Hideshima T, Tai YT, Laubach JP, Raje N, Magrangeas F, Minvielle S, Avet-Loiseau H, Munshi NC, Dorfman DM, Richardson PG, Anderson KC: Lenalidomide enhances immune checkpoint blockade-induced immune response in multiple myeloma. Clin Cancer Res. 2015;21(20):4607–4618.

    Google Scholar 

  28. Shin DS, Ribas A. The evolution of checkpoint blockade as a cancer therapy: what’s here, what’s next? Curr Opin Immunol. 2015;33:23–35.

    Article  CAS  PubMed  Google Scholar 

  29. Guthrie GJ, Charles KA, Roxburgh CS, Horgan PG, McMillan DC, Clarke SJ. The systemic inflammation-based neutrophil-lymphocyte ratio: experience in patients with cancer. Crit Rev Oncol Hematol. 2013;88:218–30.

    Article  PubMed  Google Scholar 

  30. Motomura T, Shirabe K, Mano Y, Muto J, Toshima T, Umemoto Y, Fukuhara T, Uchiyama H, Ikegami T, Yoshizumi T, Soejima Y, Maehara Y. Neutrophil-lymphocyte ratio reflects hepatocellular carcinoma recurrence after liver transplantation via inflammatory microenvironment. J Hepatol. 2013;58:58–64.

    Article  CAS  PubMed  Google Scholar 

  31. Kantola T, Klintrup K, Vayrynen JP, Vornanen J, Bloigu R, Karhu T, Herzig KH, Napankangas J, Makela J, Karttunen TJ, Tuomisto A, Makinen MJ. Stage-dependent alterations of the serum cytokine pattern in colorectal carcinoma. Br J Cancer. 2012;107:1729–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang J, Jia Y, Wang N, Zhang X, Tan B, Zhang G, Cheng Y. The clinical significance of tumor-infiltrating neutrophils and neutrophil-to-CD8+ lymphocyte ratio in patients with resectable esophageal squamous cell carcinoma. J Transl Med. 2014;12:7.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ilie M, Hofman V, Ortholan C, Bonnetaud C, Coelle C, Mouroux J, Hofman P. Predictive clinical outcome of the intratumoral CD66b-positive neutrophil-to-CD8-positive T-cell ratio in patients with resectable nonsmall cell lung cancer. Cancer. 2012;118:1726–37.

    Article  CAS  PubMed  Google Scholar 

  34. Wall R, Ross RP, Fitzgerald GF, Stanton C. Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr Rev. 2010;68:280–9.

    Article  PubMed  Google Scholar 

  35. Serhan CN. Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annu Rev Immunol. 2007;25:101–37.

    Article  CAS  PubMed  Google Scholar 

  36. Serhan CN, Chiang N, Van Dyke TE. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol. 2008;8:349–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mocellin MC, Camargo CQ, Nunes EA, Fiates GM, Trindade EB. A systematic review and meta-analysis of the n-3 polyunsaturated fatty acids effects on inflammatory markers in colorectal cancer. Clin Nutr. 2016;35(2):359–69.

    Article  CAS  PubMed  Google Scholar 

  38. Simopoulos AP. Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr. 2002;21:495–505.

    Article  CAS  PubMed  Google Scholar 

  39. Wild GE, Drozdowski L, Tartaglia C, Clandinin MT, Thomson AB. Nutritional modulation of the inflammatory response in inflammatory bowel disease—from the molecular to the integrative to the clinical. World J Gastroenterol. 2007;13:1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. James M, Proudman S, Cleland L. Fish oil and rheumatoid arthritis: past, present and future. Proc Nutr Soc. 2010;69:316–23.

    Article  CAS  PubMed  Google Scholar 

  41. Calder PC. Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance. Biochim Biophys Acta. 2015;1851:469–84.

    Article  CAS  PubMed  Google Scholar 

  42. Badwey JA, Curnutte JT, Robinson JM, Berde CB, Karnovsky MJ, Karnovsky ML. Effects of free fatty acids on release of superoxide and on change of shape by human neutrophils. Reversibility by albumin. J Biol Chem. 1984;259:7870–7.

    CAS  PubMed  Google Scholar 

  43. Bates EJ, Ferrante A, Smithers L, Poulos A, Robinson BS. Effect of fatty acid structure on neutrophil adhesion, degranulation and damage to endothelial cells. Atherosclerosis. 1995;116:247–59.

    Article  CAS  PubMed  Google Scholar 

  44. Soyland E, Nenseter MS, Braathen L, Drevon CA. Very long chain n-3 and n-6 polyunsaturated fatty acids inhibit proliferation of human T-lymphocytes in vitro. Eur J Clin Invest. 1993;23:112–21.

    Article  CAS  PubMed  Google Scholar 

  45. Calder PC. Dietary fatty acids and the immune system. Nutr Rev. 1998;56:S70–83.

    Article  CAS  PubMed  Google Scholar 

  46. Endres S, Ghorbani R, Kelley VE, Georgilis K, Lonnemann G, van der Meer JW, Cannon JG, Rogers TS, Klempner MS, Weber PC, et al. The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells. N Engl J Med. 1989;320:265–71.

    Article  CAS  PubMed  Google Scholar 

  47. German JB, Lokesh B, Kinsella JE. The effect of dietary fish oils on eicosanoid biosynthesis in peritoneal macrophages is influenced by both dietary N-6 polyunsaturated fats and total dietary fat. Prostaglandins Leukot Essent Fatty Acids. 1988;34:37–45.

    Article  CAS  PubMed  Google Scholar 

  48. Siriwardhana N, Kalupahana NS, Fletcher S, Xin W, Claycombe KJ, Quignard-Boulange A, Zhao L, Saxton AM, Moustaid-Moussa N. n-3 and n-6 polyunsaturated fatty acids differentially regulate adipose angiotensinogen and other inflammatory adipokines in part via NF-kappaB-dependent mechanisms. J Nutr Biochem. 2012;23:1661–7.

    Article  CAS  PubMed  Google Scholar 

  49. Santoli D, Phillips PD, Colt TL, Zurier RB. Suppression of interleukin 2-dependent human T cell growth in vitro by prostaglandin E (PGE) and their precursor fatty acids. Evidence for a PGE-independent mechanism of inhibition by the fatty acids. J Clin Invest. 1990;85:424–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kelly JP, Parker CW. Effects of arachidonic acid and other unsaturated fatty acids on mitogenesis in human lymphocytes. J Immunol. 1979;122:1556–62.

    CAS  PubMed  Google Scholar 

  51. Babu US, Bunning VK, Wiesenfeld P, Raybourne RB, O’Donnell M. Effect of dietary flaxseed on fatty acid composition, superoxide, nitric oxide generation and antilisterial activity of peritoneal macrophages from female Sprague-Dawley rats. Life Sci. 1997;60:545–54.

    Article  CAS  PubMed  Google Scholar 

  52. Turek JJ, Schoenlein IA, Bottoms GD. The effect of dietary n-3 and n-6 fatty acids on tumor necrosis factor-alpha production and leucine aminopeptidase levels in rat peritoneal macrophages. Prostaglandins Leukot Essent Fatty Acids. 1991;43:141–9.

    Article  CAS  PubMed  Google Scholar 

  53. Jeffery NM, Newsholme EA, Calder PC. Level of polyunsaturated fatty acids and the n-6 to n-3 polyunsaturated fatty acid ratio in the rat diet alter serum lipid levels and lymphocyte functions. Prostaglandins Leukot Essent Fatty Acids. 1997;57:149–60.

    Article  CAS  PubMed  Google Scholar 

  54. Hayashi N, Tashiro T, Yamamori H, Takagi K, Morishima Y, Otsubo Y, Sugiura T, Furukawa K, Nitta H, Nakajima N, Suzuki N, Ito I. Effects of intravenous omega-3 and omega-6 fat emulsion on cytokine production and delayed type hypersensitivity in burned rats receiving total parenteral nutrition. JPEN J Parenter Enteral Nutr. 1998;22:363–7.

    Article  CAS  PubMed  Google Scholar 

  55. Khair-el-Din TA, Sicher SC, Vazquez MA, Wright WJ, Lu CY. Docosahexaenoic acid, a major constituent of fetal serum and fish oil diets, inhibits IFN gamma-induced Ia-expression by murine macrophages in vitro. J Immunol. 1995;154:1296–306.

    CAS  PubMed  Google Scholar 

  56. Hughes DA, Southon S, Pinder AC. (n-3) Polyunsaturated fatty acids modulate the expression of functionally associated molecules on human monocytes in vitro. J Nutr. 1996;126:603–10.

    CAS  PubMed  Google Scholar 

  57. Hughes DA, Pinder AC. N-3 polyunsaturated fatty acids modulate the expression of functionally associated molecules on human monocytes and inhibit antigen-presentation in vitro. Clin Exp Immunol. 1997;110:516–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hubbard NE, Somers SD, Erickson KL. Effect of dietary fish oil on development and selected functions of murine inflammatory macrophages. J Leukoc Biol. 1991;49:592–8.

    CAS  PubMed  Google Scholar 

  59. Sadeghi S, Wallace FA, Calder PC. Dietary lipids modify the cytokine response to bacterial lipopolysaccharide in mice. Immunology. 1999;96:404–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Peterson LD, Thies F, Sanderson P, Newsholme EA, Calder PC. Low levels of eicosapentaenoic and docosahexaenoic acids mimic the effects of fish oil upon rat lymphocytes. Life Sci. 1998;62:2209–17.

    Article  CAS  PubMed  Google Scholar 

  61. Calder PC. Polyunsaturated fatty acids, inflammatory processes and inflammatory bowel diseases. Mol Nutr Food Res. 2008;52:885–97.

    Article  CAS  PubMed  Google Scholar 

  62. Curtis CL, Hughes CE, Flannery CR, Little CB, Harwood JL, Caterson B. n-3 fatty acids specifically modulate catabolic factors involved in articular cartilage degradation. J Biol Chem. 2000;275:721–4.

    Article  CAS  PubMed  Google Scholar 

  63. Flower RJ, Perretti M. Controlling inflammation: a fat chance? J Exp Med. 2005;201:671–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Norling LV, Serhan CN. Profiling in resolving inflammatory exudates identifies novel anti-inflammatory and pro-resolving mediators and signals for termination. J Intern Med. 2010;268:15–24.

    CAS  PubMed  Google Scholar 

  65. Gilroy DW, Lawrence T, Perretti M, Rossi AG. Inflammatory resolution: new opportunities for drug discovery. Nat Rev Drug Discov. 2004;3:401–16.

    Article  CAS  PubMed  Google Scholar 

  66. Rueter K, Haynes A, Prescott SL. Developing primary intervention strategies to prevent allergic disease. Curr Allergy Asthma Rep. 2015;15:537.

    Article  Google Scholar 

  67. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11:85–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hussein MR, Hassan HI. Analysis of the mononuclear inflammatory cell infiltrate in the normal breast, benign proliferative breast disease, in situ and infiltrating ductal breast carcinomas: preliminary observations. J Clin Pathol. 2006;59:972–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ben-Neriah Y, Karin M. Inflammation meets cancer, with NF-kappaB as the matchmaker. Nat Immunol. 2011;12:715–23.

    Article  CAS  PubMed  Google Scholar 

  70. Rose DP, Connolly JM, Coleman M. Effect of omega-3 fatty acids on the progression of metastases after the surgical excision of human breast cancer cell solid tumors growing in nude mice. Clin Cancer Res. 1996;2:1751–6.

    CAS  PubMed  Google Scholar 

  71. Mandal CC, Ghosh-Choudhury T, Yoneda T, Choudhury GG, Ghosh-Choudhury N. Fish oil prevents breast cancer cell metastasis to bone. Biochem Biophys Res Commun. 2010;402:602–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gonzalez MJ, Schemmel RA, Gray JI, Dugan L Jr, Sheffield LG, Welsch CW. Effect of dietary fat on growth of MCF-7 and MDA-MB231 human breast carcinomas in athymic nude mice: relationship between carcinoma growth and lipid peroxidation product levels. Carcinogenesis. 1991;12:1231–5.

    Article  CAS  PubMed  Google Scholar 

  73. Hardman WE. Dietary canola oil suppressed growth of implanted MDA-MB 231 human breast tumors in nude mice. Nutr Cancer. 2007;57:177–83.

    Article  CAS  PubMed  Google Scholar 

  74. Manna S, Janarthan M, Ghosh B, Rana B, Rana A, Chatterjee M. Fish oil regulates cell proliferation, protect DNA damages and decrease HER-2/neu and c-Myc protein expression in rat mammary carcinogenesis. Clin Nutr. 2010;29:531–7.

    Article  CAS  PubMed  Google Scholar 

  75. Noguchi M, Minami M, Yagasaki R, Kinoshita K, Earashi M, Kitagawa H, Taniya T, Miyazaki I. Chemoprevention of DMBA-induced mammary carcinogenesis in rats by low-dose EPA and DHA. Br J Cancer. 1997;75:348–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Manna S, Chakraborty T, Ghosh B, Chatterjee M, Panda A, Srivastava S, Rana A, Chatterjee M. Dietary fish oil associated with increased apoptosis and modulated expression of Bax and Bcl-2 during 7,12-dimethylbenz(alpha)anthracene-induced mammary carcinogenesis in rats. Prostaglandins Leukot Essent Fatty Acids. 2008;79:5–14.

    Article  CAS  PubMed  Google Scholar 

  77. Simopoulos AP. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother. 2002;56:365–79.

    Article  CAS  PubMed  Google Scholar 

  78. Wei N, Wang B, Zhang QY, Mi MT, Zhu JD, Yu XP, Yuan JL, Chen K, Wang J, Chang H. Effects of different dietary fatty acids on the fatty acid compositions and the expression of lipid metabolic-related genes in mammary tumor tissues of rats. Nutr Cancer. 2008;60:810–25.

    Article  CAS  PubMed  Google Scholar 

  79. Jiang W, Zhu Z, McGinley JN, El Bayoumy K, Manni A, Thompson HJ. Identification of a molecular signature underlying inhibition of mammary carcinoma growth by dietary N-3 fatty acids. Cancer Res. 2012;72:3795–806.

    Article  CAS  PubMed  Google Scholar 

  80. Xue M, Wang Q, Zhao J, Dong L, Ge Y, Hou L, Liu Y, Zheng Z. Docosahexaenoic acid inhibited the Wnt/beta-catenin pathway and suppressed breast cancer cells in vitro and in vivo. J Nutr Biochem. 2014;25:104–10.

    Article  CAS  PubMed  Google Scholar 

  81. Berg JW. Can nutrition explain the pattern of international epidemiology of hormone-dependent cancers? Cancer Res. 1975;35:3345–50.

    CAS  PubMed  Google Scholar 

  82. Tominaga S. Cancer incidence in Japanese in Japan, Hawaii, and western United States. Natl Cancer Inst Monogr. 1985;69:83–92.

    CAS  PubMed  Google Scholar 

  83. Goodstine SL, Zheng T, Holford TR, Ward BA, Carter D, Owens PH, Mayne ST. Dietary (n-3)/(n-6) fatty acid ratio: possible relationship to premenopausal but not postmenopausal breast cancer risk in U.S. women. J Nutr. 2003;133:1409–14.

    CAS  PubMed  Google Scholar 

  84. Calder PC. N-3 polyunsaturated fatty acids and immune cell function. Adv Enzyme Regul. 1997;37:197–237.

    Article  CAS  PubMed  Google Scholar 

  85. Rose DP. Dietary fatty acids and cancer. Am J Clin Nutr. 1997;66:998S–1003S.

    CAS  PubMed  Google Scholar 

  86. Thiebaut AC, Chajes V, Gerber M, Boutron-Ruault MC, Joulin V, Lenoir G, Berrino F, Riboli E, Benichou J, Clavel-Chapelon F. Dietary intakes of omega-6 and omega-3 polyunsaturated fatty acids and the risk of breast cancer. Int J Cancer. 2009;124:924–31.

    Article  CAS  PubMed  Google Scholar 

  87. Kim J, Lim SY, Shin A, Sung MK, Ro J, Kang HS, Lee KS, Kim SW, Lee ES. Fatty fish and fish omega-3 fatty acid intakes decrease the breast cancer risk: a case-control study. BMC Cancer. 2009;9:216.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Khankari NK, Bradshaw PT, Steck SE, He K, Olshan AF, Shen J, Ahn J, Chen Y, Ahsan H, Terry MB, Teitelbaum SL, Neugut AI, Santella RM, Gammon MD. Dietary intake of fish, polyunsaturated fatty acids, and survival after breast cancer: a population-based follow-up study on Long Island. New York: Cancer; 2015.

    Google Scholar 

  89. Im DS. Functions of omega-3 fatty acids and FFA4 (GPR120) in macrophages. Eur J Pharmacol. 2016;785:36–43.

    Google Scholar 

  90. Bjursell M, Xu X, Admyre T, Bottcher G, Lundin S, Nilsson R, Stone VM, Morgan NG, Lam YY, Storlien LH, Linden D, Smith DM, Bohlooly YM, Oscarsson J. The beneficial effects of n-3 polyunsaturated fatty acids on diet induced obesity and impaired glucose control do not require Gpr120. PLoS One. 2014;9:e114942.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Chung H, Lee YS, Mayoral R, Oh DY, Siu JT, Webster NJ, Sears DD, Olefsky JM, Ellies LG. Omega-3 fatty acids reduce obesity-induced tumor progression independent of GPR120 in a mouse model of postmenopausal breast cancer. Oncogene. 2015;34:3504–13.

    Article  CAS  PubMed  Google Scholar 

  92. Turk HF, Chapkin RS. Membrane lipid raft organization is uniquely modified by n-3 polyunsaturated fatty acids. Prostaglandins Leukot Essent Fatty Acids. 2013;88:43–7.

    Article  CAS  PubMed  Google Scholar 

  93. Xia S, Li XP, Cheng L, Han MT, Zhang MM, Shao QX, Xu HX, Qi L. Fish oil-rich diet promotes hematopoiesis and alters hematopoietic niche. Endocrinology. 2015;156:2821–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Schumann T, Adhikary T, Wortmann A, Finkernagel F, Lieber S, Schnitzer E, Legrand N, Schober Y, Nockher WA, Toth PM, Diederich WE, Nist A, Stiewe T, Wagner U, Reinartz S, Muller-Brusselbach S, Muller R. Deregulation of PPARbeta/delta target genes in tumor-associated macrophages by fatty acid ligands in the ovarian cancer microenvironment. Oncotarget. 2015;6:13416–33.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Yan D, Yang Q, Shi M, Zhong L, Wu C, Meng T, Yin H, Zhou J. Polyunsaturated fatty acids promote the expansion of myeloid-derived suppressor cells by activating the JAK/STAT3 pathway. Eur J Immunol. 2013;43:2943–55.

    Article  CAS  PubMed  Google Scholar 

  96. Talmadge JE, Donkor M, Scholar E. Inflammatory cell infiltration of tumors: Jekyll or Hyde. Cancer Metastasis Rev. 2007;26:373–400.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

James E Talmadge, Timothy R. McGuire and John Graham Sharp are members of the Fred and Pamela Buffet Cancer Center supported by 30CA036727. John Graham Sharp and Timothy R McGuire receive support via the Children’s Hospital/UNMC Pediatric Cancer Research Group, from the state of Nebraska and a Hyundai Foundation “Hope on Wheels” Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saraswoti Khadge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khadge, S., Sharp, J.G., McGuire, T.R., Thiele, G.M., Talmadge, J.E. (2017). Lipid Inflammatory Mediators in Cancer Progression and Therapy. In: Kalinski, P. (eds) Tumor Immune Microenvironment in Cancer Progression and Cancer Therapy. Advances in Experimental Medicine and Biology, vol 1036. Springer, Cham. https://doi.org/10.1007/978-3-319-67577-0_10

Download citation

Publish with us

Policies and ethics