Skip to main content

Kinematic Analysis for a Planar Redundant Serial Manipulator

  • Conference paper
  • First Online:
Multibody Mechatronic Systems (MuSMe 2017)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 54))

Included in the following conference series:

  • 1753 Accesses

Abstract

A planar serial manipulator with three rotational joints (planar 3R) can be seen to be a kinematically redundant system if only the position of the end-effector is taken into account. Configuration sets of serial manipulators of planar 3R will be considered in this work in detail. The configuration set is the solution set of all rotational joint angles (actually, we use the tangent of the half-angle) fulfilling the kinematic mapping. Then the configuration set will be an algebraic set if we fix the end-effector or the end-effector follows algebraic motions (for instance, algebraic curves in the special Euclidean group). We show the characteristic of configuration curves among the workspace in terms of the number of real connected components. The configuration curve has either one connected component or two connected components. Furthermore, we also studied the torque variation among the real connected components of the configuration set.

This research was funded by the Austrian Ministry for Transport, Innovation and Technology (BMVIT) within the framework of the sponsorship agreement formed for 2015–2018 under the project RedRobCo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Angeles, J., Fundamentals of Robotic Mechanical Systems, vol. 2. Springer, Berlin (2002)

    Google Scholar 

  2. Asada, H., Slotine, J.J.: Robot Analysis and Control. Wiley, New York (1986)

    Google Scholar 

  3. Brunnthaler, K., Schröcker, H.P., Husty, M.: A new method for the synthesis of Bennett mechanisms. In: Proceedings of CK 2005, International Workshop on Computational Kinematics, Cassino (2005)

    Google Scholar 

  4. Chan, T.F., Dubey, R.V.: A weighted least-norm solution based scheme for avoiding joint limits for redundant joint manipulators. IEEE Trans. Robotics Autom. 11(2), 286–292 (1995)

    Article  Google Scholar 

  5. Chiaverini, S., Oriolo, G., Walker, I.D.: Kinematically Redundant Manipulators, pp. 245–268. Springer, Heidelberg (2008)

    Google Scholar 

  6. Denavit, J., Hartenberg, R.S.: A kinematic notation for lower-pair mechanisms based on matrices. Trans. ASME J. Appl. Mech. 22, 215–221 (1955)

    MathSciNet  MATH  Google Scholar 

  7. Grashof, F.: Theoretische Maschinenlehre, vol. 3. L. Voss, Leipzig (1890)

    Google Scholar 

  8. Hegedüs, G., Schicho, J., Schröcker, H.P.: Factorization of rational curves in the study quadric. Mech. Mach. Theor. 69, 142–152 (2013)

    Article  Google Scholar 

  9. Hegedüs, G., Schicho, J., Schröcker, H.P.: The theory of bonds: a new method for the analysis of linkages. Mech. Mach. Theor. 70, 407–424 (2013)

    Article  Google Scholar 

  10. Hollerbach, J., Suh, K.: Redundancy resolution of manipulators through torque optimization. IEEE J. Robot. Autom. 3(4), 308–316 (1987)

    Article  Google Scholar 

  11. Husty, M.L., Pfurner, M., Schröcker, H.P.: A new and efficient algorithm for the inverse kinematics of a general serial 6R manipulator. Mech. Mach. Theor. 42(1), 66–81 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Husty, M.L., Pfurner, M., Schröcker, H.P., Brunnthaler, K.: Algebraic methods in mechanism analysis and synthesis. Robotica 25(06), 661–675 (2007)

    Article  Google Scholar 

  13. Husty, M.L., Schröcker, H.P.: Algebraic geometry and kinematics. In: Emiris, I.Z., Sottile, F., Theobald, T. (eds.) Nonlinear Computational Geometry. The IMA Volumes in Mathematics and its Applications, vol. 151, pp. 85–107. Springer, New York (2010)

    Google Scholar 

  14. Kecskemethy, A., Krupp, T., Hiller, M.: Symbolic processing of multiloop mechanism dynamics using closed-form kinematics solutions. Multibody Syst. Dyn. 1(1), 23–45 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ketchel, J., Larochelle, P.: Collision detection of cylindrical rigid bodies for motion planning. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, ICRA 2006, pp. 1530–1535. IEEE (2006)

    Google Scholar 

  16. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. In: Autonomous Robot Vehicles, pp. 396–404. Springer, New York (1986)

    Google Scholar 

  17. Li, Z.: Closed linkages with six revolute joints. Ph.D. thesis, Johannes Kepler University Linz (2015)

    Google Scholar 

  18. Li, Z., Schicho, J., Schröcker, H.P.: The rational motion of minimal dual quaternion degree with prescribed trajectory. Comput. Aided Geom. Des. 41, 1–9 (2016)

    Article  MathSciNet  Google Scholar 

  19. Luo, S., Ahmad, S.: Predicting the drift motion for kinematically redundant robots. IEEE Trans. Syst. Man Cybern. 22(4), 717–728 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mohamed, H.A., Yahya, S., Moghavvemi, M., Yang, S.: A new inverse kinematics method for three dimensional redundant manipulators. In: ICCAS-SICE, pp. 1557–1562. IEEE (2009)

    Google Scholar 

  21. Paul, R.P.: Robot Manipulators: Mathematics, Programming, and Control: The Computer Control of Robot Manipulators. Richard Paul, MIT Press, Cambridge (1981)

    Google Scholar 

  22. Pfurner, M.: Closed form inverse kinematics solution for a redundant anthropomorphic robot arm. Comput. Aided Geom. Des. 47, 163–171 (2016)

    Article  MathSciNet  Google Scholar 

  23. Schröcker, H.P., Husty, M.L., McCarthy, J.M.: Kinematic mapping based assembly mode evaluation of planar four-bar mechanisms. J. Mech. Des. 129(9), 924–929 (2007)

    Article  Google Scholar 

  24. Sciavicco, L., Siciliano, B.: Modelling and Control of Robot Manipulators. Springer, London (2012)

    Google Scholar 

  25. Selig, J.M.: Geometric Fundamentals of Robotics. Monographs in Computer Science, 2nd edn. Springer, New York (2005)

    MATH  Google Scholar 

  26. Siciliano, B.: Kinematic control of redundant robot manipulators: a tutorial. J. Intell. Robotic Syst. 3(3), 201–212 (1990)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Andrés Kecskeméthy (University of Duisburg-Essen), Josef Schicho (University of Linz) and Hans-Peter Schröcker (University Innsbruck) for the fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zijia Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Li, Z., Brandstötter, M., Hofbaur, M. (2018). Kinematic Analysis for a Planar Redundant Serial Manipulator. In: Carvalho, J., Martins, D., Simoni, R., Simas, H. (eds) Multibody Mechatronic Systems. MuSMe 2017. Mechanisms and Machine Science, vol 54. Springer, Cham. https://doi.org/10.1007/978-3-319-67567-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67567-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67566-4

  • Online ISBN: 978-3-319-67567-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics