Advertisement

Semi-automatic Cardiac and Respiratory Gated MRI for Cardiac Assessment During Exercise

  • Bram RuijsinkEmail author
  • Esther Puyol-Antón
  • Muhammad Usman
  • Joshua  van  Amerom
  • Phuoc Duong
  • Mari Nieves Velasco Forte
  • Kuberan  Pushparajah
  • Alessandra Frigiola
  • David A. Nordsletten
  • Andrew P. King
  • Reza Razavi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10555)

Abstract

Imaging of the heart during exercise can improve detection and treatment of heart diseases but is challenging using current clinically applied cardiac MRI (cMRI) techniques. Real-time (RT) imaging strategies have recently been proposed for exercise cMRI, but respiratory motion and unreliable cardiac gating introduce significant errors in quantification of cardiac function. Self-navigated cMRI sequences are currently not routinely available in a clinical environment. We aim to establish a method for cardiac and respiratory gated cine exercise cMRI that can be applied in a clinical cMRI setting. We developed a retrospective, image-based cardiac and respiratory gating and reconstruction framework based on widely available highly accelerated dynamic imaging. From the acquired dynamic images, respiratory motion was estimated using manifold learning. Cardiac periodicity was obtained by identifying local maxima in the temporal frequency spectrum of the spatial means of the images. We then binned the dynamic images in respiratory and cardiac phases and subsequently registered and averaged them to reconstruct a respiratory and cardiac gated cine stack. We evaluated our method in healthy volunteers and patients with heart diseases and demonstrate good agreement with existing RT acquisitions (R = .82). We show that our reconstruction pipeline yields better image quality and has lower inter- and intra-observer variability compared to RT imaging. Subsequently, we demonstrate that our method is able to detect a pathological response to exercise in patients with heart diseases, illustrating its potential benefit in cardiac diagnostic and prognostic assessment.

Keywords

Exercise MRI Cardiac imaging Image-based motion correction Manifold learning 

References

  1. 1.
    van Amerom, J., Lloyd, D., Price, A., Kuklisova Murgasova, M., Aljabar, P., Malik, S., Lohezic, M., Rutherford, M., Pushparajah, K., Razavi, R., et al.: Fetal cardiac cine imaging using highly accelerated dynamic MRI with retrospective motion correction and outlier rejection. Magn. Reson. Med. (2017)Google Scholar
  2. 2.
    Cahalin, L., Chase, P., Arena, R., Myers, J., Bensimhon, D., Peberdy, M., Ashley, E., West, E., Forman, D., Pinkstaff, S., et al.: A meta-analysis of the prognostic significance of cardiopulmonary exercise testing in patients with heart failure. Heart Fail. Rev. 18(1), 79–94 (2013)CrossRefGoogle Scholar
  3. 3.
    Claessen, G., Claus, P., Delcroix, M., Bogaert, J., La Gerche, A., Heidbuchel, H.: Interaction between respiration and right versus left ventricular volumes at rest and during exercise: a real-time cardiac magnetic resonance study. Am. J. Physiol. Heart Circ. Physiol. 306(6), H816–H824 (2014)CrossRefGoogle Scholar
  4. 4.
    Crowe, M., Larson, A., Zhang, Q., Carr, J., White, R., Li, D., Simonetti, O.: Automated rectilinear self-gated cardiac cine imaging. Magn. Reson. Med. 52(4), 782–788 (2004)CrossRefGoogle Scholar
  5. 5.
    Feng, L., Axel, L., Chandarana, H., Block, K.T., Sodickson, D.K., Otazo, R.: XD-GRASP: golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing. Magn. Reson. Med. 75(2), 775–788 (2016)CrossRefGoogle Scholar
  6. 6.
    Fratz, S., Chung, T., Greil, G., Samyn, M., Taylor, A., Buechel, E., Yoo, S.J., Powell, A.: Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease. J. Cardiovasc. Magn. Reson. 15(1), 51 (2013)CrossRefGoogle Scholar
  7. 7.
    Han, F., Zhou, Z., Han, E., Gao, Y., Nguyen, K.L., Finn, J., Hu, P.: Self-gated 4D multiphase, steady-state imaging with contrast enhancement (MUSIC) using rotating cartesian K-space (ROCK): validation in children with congenital heart disease. Magn. Reson. Med. (2016)Google Scholar
  8. 8.
    Hansen, M., Sørensen, T., Arai, A., Kellman, P.: Retrospective reconstruction of high temporal resolution cine images from real-time MRI using iterative motion correction. Magn. Reson. Med. 68(3), 741–750 (2012)CrossRefGoogle Scholar
  9. 9.
    Kim, W., Mun, C., Kim, D., Cho, Z.: Extraction of cardiac and respiratory motion cycles by use of projection data and its applications to nmr imaging. Magn. Reson. Med. 13(1), 25–37 (1990)CrossRefGoogle Scholar
  10. 10.
    La Gerche, A., Claessen, G., Van de Bruaene, A., Pattyn, N., Van Cleemput, J., Gewillig, M., Bogaert, J., Dymarkowski, S., Claus, P., Heidbuchel, H.: Cardiac MRI: a new gold standard for ventricular volume quantification during high-intensity exercise. Circ. Cardiovasc. Imaging 6(2), 329–338 (2013)CrossRefGoogle Scholar
  11. 11.
    Larson, A., White, R., Laub, G., McVeigh, E., Li, D., Simonetti, O.: Self-gated cardiac cine MRI. Magn. Reson. Med. 51(1), 93–102 (2004)CrossRefGoogle Scholar
  12. 12.
    Liu, C., Bammer, R., Kim, D.H., Moseley, M.: Self-navigated interleaved spiral (SNAILS): application to high-resolution diffusion tensor imaging. Magn. Reson. Med. 52(6), 1388–1396 (2004)CrossRefGoogle Scholar
  13. 13.
    Lurz, P., Muthurangu, V., Schievano, S., Nordmeyer, J., Bonhoeffer, P., Taylor, A., Hansen, M.: Feasibility and reproducibility of biventricular volumetric assessment of cardiac function during exercise using real-time radial k-t SENSE magnetic resonance imaging. J. Magn. Reson. Imaging 29(5), 1062–1070 (2009)CrossRefGoogle Scholar
  14. 14.
    Paul, J., Divkovic, E., Wundrak, S., Bernhardt, P., Rottbauer, W., Neumann, H., Rasche, V.: High-resolution respiratory self-gated golden angle cardiac MRI: comparison of self-gating methods in combination with k-t SPARSE SENSE. Magn. Reson. Med. 73(1), 292–298 (2015)CrossRefGoogle Scholar
  15. 15.
    Peters, D.C., Nezafat, R., Eggers, H., Stehning, C., Manning, W.J.: 2D free-breathing dual navigator-gated cardiac function validated against the 2D breath-hold acquisition. J. Magn. Reson. Imaging 28(3), 773–777 (2008)CrossRefGoogle Scholar
  16. 16.
    Thirion, J.P.: Image matching as a diffusion process: an analogy with Maxwell’s demons. Med. Image Anal. 2(3), 243–260 (1998)CrossRefGoogle Scholar
  17. 17.
    Usman, M., Atkinson, D., Kolbitsch, C., Schaeffter, T., Prieto, C.: Manifold learning based ECG-free free-breathing cardiac CINE MRI. J. Magn. Reson. Imaging 41(6), 1521–1527 (2015)CrossRefGoogle Scholar
  18. 18.
    Yoon, H., Kim, K., Kim, D., Bresler, Y., Ye, J.: Motion adaptive patch-based low-rank approach for compressed sensing cardiac cine MRI. IEEE Trans. Med. Imaging 33(11), 2069–2085 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Bram Ruijsink
    • 1
    • 2
  • Esther Puyol-Antón
    • 1
  • Muhammad Usman
    • 1
    • 3
  • Joshua  van  Amerom
    • 1
  • Phuoc Duong
    • 1
    • 2
  • Mari Nieves Velasco Forte
    • 1
    • 2
  • Kuberan  Pushparajah
    • 1
    • 2
  • Alessandra Frigiola
    • 1
    • 2
  • David A. Nordsletten
    • 1
  • Andrew P. King
    • 1
  • Reza Razavi
    • 1
    • 2
  1. 1.Division of Imaging Sciences and Biomedical EngineeringKing’s College LondonLondonUK
  2. 2.Guy’s and St Thomas’ Hospital NHS Foundation TrustLondonUK
  3. 3.Department of Computer ScienceUniversity College LondonLondonUK

Personalised recommendations