Skip to main content

Context-Sensitive Super-Resolution for Fast Fetal Magnetic Resonance Imaging

  • Conference paper
  • First Online:
Molecular Imaging, Reconstruction and Analysis of Moving Body Organs, and Stroke Imaging and Treatment (RAMBO 2017, CMMI 2017, SWITCH 2017)


3D Magnetic Resonance Imaging (MRI) is often a trade-off between fast but low-resolution image acquisition and highly detailed but slow image acquisition. Fast imaging is required for targets that move to avoid motion artefacts. This is in particular difficult for fetal MRI. Spatially independent upsampling techniques, which are the state-of-the-art to address this problem, are error prone and disregard contextual information. In this paper we propose a context-sensitive upsampling method based on a residual convolutional neural network model that learns organ specific appearance and adopts semantically to input data allowing for the generation of high resolution images with sharp edges and fine scale detail. By making contextual decisions about appearance and shape, present in different parts of an image, we gain a maximum of structural detail at a similar contrast as provided by high-resolution data. We experiment on 145 fetal scans and show that our approach yields an increased PSNR of 1.25 dB when applied to under-sampled fetal data cf. baseline upsampling. Furthermore, our method yields an increased PSNR of 1.73 dB when utilizing under-sampled fetal data to perform brain volume reconstruction on motion corrupted captured data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


  1. 1.


  1. Borman, S., et al.: Super-resolution from image sequences-a review. In: Midwest Symposium on Circuits and Systems, pp. 374–378. IEEE (1998)

    Google Scholar 

  2. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). doi:10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  3. Dong, C., Deng, Y., Loy, C.C., Tang, X.: Compression artifacts reduction by a deep convolutional network, pp. 576–584, December 2015

    Google Scholar 

  4. Dong, C., et al.: Image super-resolution using deep convolutional networks. IEEE Trans. PAMI 38(2), 295–307 (2016)

    Article  Google Scholar 

  5. Gholipour, A., et al.: Robust super-resolution volume reconstruction from slice acquisitions: application to fetal brain MRI. TMI 29(10), 1739–1758 (2010)

    Google Scholar 

  6. Greenspan, H.: Super-resolution in medical imaging. Comput. J. 52(1), 43–63 (2009)

    Article  Google Scholar 

  7. Jia, Y., He, Z., Gholipour, A., Warfield, S.K.: Single anisotropic 3-D MR image upsampling via overcomplete dictionary trained from in-plane high resolution slices. IEEE J. Biomed. Health Inf. 20(6), 1552–1561 (2016)

    Article  Google Scholar 

  8. Kainz, B., et al.: Fast volume reconstruction from motion corrupted stacks of 2D slices. Trans. Med. Imag. 34(9), 1901–1913 (2015)

    Article  Google Scholar 

  9. Kamnitsas, K., Ferrante, E., Parisot, S., Ledig, C., Nori, A.V., Criminisi, A., Rueckert, D., Glocker, B.: DeepMedic for brain tumor segmentation. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Winzeck, S., Handels, H. (eds.) BrainLes 2016. LNCS, vol. 10154, pp. 138–149. Springer, Cham (2016). doi:10.1007/978-3-319-55524-9_14

    Chapter  Google Scholar 

  10. Kim, K., et al.: Intersection based motion correction of multislice MRI for 3-D in utero fetal brain image formation. Trans. Med. Imag. 29(1), 146–158 (2010)

    Article  Google Scholar 

  11. Kuklisova-Murgasova, M., Quaghebeur, G., Rutherford, M.A., Hajnal, J.V., Schnabel, J.A.: Reconstruction of fetal brain MRI with intensity matching and complete outlier removal. Med. Image Anal. 16(8), 1550–1560 (2012)

    Article  Google Scholar 

  12. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  13. Manjón, J.V., Coupé, P., Buades, A., Fonov, V., Collins, D.L., Robles, M.: Non-local MRI upsampling. Med. Image Anal. 14(6), 784–792 (2010)

    Article  Google Scholar 

  14. Nasrollahi, K., et al.: Super-resolution: a comprehensive survey. Mach. Vis. Appl. 25(6), 1423–1468 (2014)

    Article  Google Scholar 

  15. Oktay, O., et al.: Multi-input cardiac image super-resolution using convolutional neural networks. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 246–254. Springer, Cham (2016). doi:10.1007/978-3-319-46726-9_29

    Chapter  Google Scholar 

  16. Rousseau, F., Kim, K., Studholme, C., Koob, M., Dietemann, J.-L.: On super-resolution for fetal brain MRI. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6362, pp. 355–362. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15745-5_44

    Chapter  Google Scholar 

  17. Rousseau, F., et al.: Registration-based approach for reconstruction of high-resolution in utero fetal MR brain images. Acad. Radiol. 13(9), 1072–1081 (2006)

    Article  Google Scholar 

  18. Rousseau, F., et al.: BTK: an open-source toolkit for fetal brain MR image processing. Comput. Methods Programs Biomed. 109(1), 65–73 (2013)

    Article  Google Scholar 

  19. Shi, W., Caballero, J., Huszár, F., Totz, J., Aitken, A.P., Bishop, R., Rueckert, D., Wang, Z.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network, pp. 1874–1883 (2016)

    Google Scholar 

  20. Simonyan, K., et al.: very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 abs/1409.1556 (2014)

  21. Tourbier, S., Bresson, X., Hagmann, P., Thiran, J.P., Meuli, R., Cuadra, M.B.: An efficient total variation algorithm for super-resolution in fetal brain MRI with adaptive regularization. NeuroImage 118, 584–597 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Steven McDonagh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

McDonagh, S. et al. (2017). Context-Sensitive Super-Resolution for Fast Fetal Magnetic Resonance Imaging. In: Cardoso, M., et al. Molecular Imaging, Reconstruction and Analysis of Moving Body Organs, and Stroke Imaging and Treatment. RAMBO CMMI SWITCH 2017 2017 2017. Lecture Notes in Computer Science(), vol 10555. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67563-3

  • Online ISBN: 978-3-319-67564-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics