Robust Regression of Brain Maturation from 3D Fetal Neurosonography Using CRNs

  • Ana I. L. NambureteEmail author
  • Weidi Xie
  • J. Alison Noble
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10554)


We propose a fully three-dimensional Convolutional Regression Network (CRN) for the task of predicting fetal brain maturation from 3D ultrasound (US) data. Anatomical development is modelled as the sonographic patterns visible in the brain at a given gestational age, which are aggregated by the model into a single value: the brain maturation (BM) score. These patterns are learned from 589 3D fetal volumes, and the model is applied to 3D US images of 146 fetal subjects acquired at multiple, ethnically diverse sites, spanning an age range of 18 to 36 gestational weeks. Achieving a mean error of 7.7 days between ground-truth and estimated maturational scores, our method outperforms the current state-of-art for automated BM estimation from 3D US images.


  1. 1.
    Toi, A., Lister, W.S., Fong, K.W.: How early are fetal cerebral sulci visible at prenatal ultrasound and what is the normal pattern of early fetal sulcal development? Ultrasound Obstet. Gynecol. 24(7), 706–715 (2004)CrossRefGoogle Scholar
  2. 2.
    Monteagudo, A., Timor-Tritsch, I.E.: Normal sonographic development of the central nervous system from the second trimester onwards using 2D, 3D and transvaginal sonography. Prenat. Diagn. 29(4), 326–339 (2009)CrossRefGoogle Scholar
  3. 3.
    Vinkesteijn, A., Mulder, P., Wladimiroff, J.: Fetal transverse cerebellar diameter measurements in normal and reduced fetal growth. Ultrasound Obstet. Gynecol. 15(1), 47–51 (2000)CrossRefGoogle Scholar
  4. 4.
    Pistorius, L.R., Stoutenbeek, P., Groenendaal, F., de Vries, L., Manten, G., Mulder, E., Visser, G.: Grade and symmetry of normal fetal cortical development: a longitudinal two- and three-dimensional ultrasound study. Ultrasound Obstet. Gynecol. 36(6), 700–708 (2010)CrossRefGoogle Scholar
  5. 5.
    Franke, K., Luders, E., May, A., Wilke, M., Gaser, C.: Brain maturation: predicting individual BrainAGE in children and adolescents using structural MRI. NeuroImage 63(3), 1305–1312 (2012)CrossRefGoogle Scholar
  6. 6.
    Toews, M., Wells, W.M., Zöllei, L.: A feature-based developmental model of the infant brain in structural MRI. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7511, pp. 204–211. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33418-4_26 CrossRefGoogle Scholar
  7. 7.
    Namburete, A.I.L., Stebbing, R.V., Kemp, B., Yaqub, M., Papageorghiou, A.T., Alison Noble, J.: Learning-based prediction of gestational age from ultrasound images of the fetal brain. Med. Image Anal. 21(1), 72–86 (2015)CrossRefGoogle Scholar
  8. 8.
    Štern, D., Payer, C., Lepetit, V., Urschler, M.: Automated age estimation from hand MRI volumes using deep learning. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 194–202. Springer, Cham (2016). doi: 10.1007/978-3-319-46723-8_23 CrossRefGoogle Scholar
  9. 9.
    Huber, P.J.: Robust estimation of a location parameter. Ann. Math. Stat. 35(1), 73–101 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Papageorghiou, A.T., Ohuma, E.O., Altman, D.G., Todros, T., Cheikh Ismail, L., Lambert, A., Jaffer, Y.A., Bertino, E., Gravett, M.G., Purwar, M., Noble, J.A., Pang, R., Victora, C.G., Barros, F.C., Carvalho, M., Salomon, L.J., Bhutta, Z.A., Kennedy, S.H., Villar, J.: International fetal and newborn growth consortium for the 21st century (INTERGROWTH-21st): international standards for fetal growth based on serial ultrasound measurements: the Fetal growth longitudinal study of the INTERGROWTH-21st project. Lancet 384(9946), 869–79 (2014)CrossRefGoogle Scholar
  11. 11.
    Tieleman, T., Hinton, G.: Lecture 6.5-RMSprop: divide the gradient by a running average of its recent magnitude. COURSERA Neural Networks Mach. Learn. 4, 26–31 (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ana I. L. Namburete
    • 1
    Email author
  • Weidi Xie
    • 1
  • J. Alison Noble
    • 1
  1. 1.Department of Engineering Science, Institute of Biomedical EngineeringUniversity of OxfordOxfordUK

Personalised recommendations