Dong, N., Xin, Y., Xin, C., Chien-Ting, C., Siping, C., Pheng Ann, H., Shengli, L., Jing, Q., Tianfu, W.: Standard plane localization in ultrasound by radial component model and selective search. Ultrasound Med. Biol. 40, 2728–2742 (2014)
CrossRef
Google Scholar
Chen, H., Dou, Q., Ni, D., Cheng, J.-Z., Qin, J., Li, S., Heng, P.-A.: Automatic fetal ultrasound standard plane detection using knowledge transferred recurrent neural networks. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 507–514. Springer, Cham (2015). doi:10.1007/978-3-319-24553-9_62
CrossRef
Google Scholar
Yaqub, M., Kelly, B., Papageorghiou, A.T., Noble, J.A.: Guided random forests for identification of key fetal anatomy and image categorization in ultrasound scans. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 687–694. Springer, Cham (2015). doi:10.1007/978-3-319-24574-4_82
CrossRef
Google Scholar
Criminisi, A., Shotton, J., Konukoglu, E.: Decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Foundations and Trends in Computer Graphics and Vision (2012)
Google Scholar
Cuingnet, R., Prevost, R., Lesage, D., Cohen, L.D., Mory, B., Ardon, R.: Automatic detection and segmentation of kidneys in 3D CT images using random forests. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 66–74. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33454-2_9
CrossRef
Google Scholar
Gauriau, R., Cuingnet, R., Lesage, D., Bloch, I.: Multi-organ localization with cascaded global-to-local regression and shape prior. Med. Image Anal. 23, 70–83 (2015)
CrossRef
Google Scholar
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural International Proceedings Systems (NIPS) (2012)
Google Scholar
Papageorghiou, A.T., et al.: for the Internat. Fetal, for the 21st Cent., N.G.C.: Inter-nat. standards for fetal growth based on serial ultrasound measurements: the fetal growth longitudinal study of the INTERGROWTH-21st project. The Lancet (2014)
Google Scholar