Advertisement

Abdomen Segmentation in 3D Fetal Ultrasound Using CNN-powered Deformable Models

  • Alexander Schmidt-RichbergEmail author
  • Tom Brosch
  • Nicole Schadewaldt
  • Tobias Klinder
  • Angelo Cavallaro
  • Ibtisam Salim
  • David Roundhill
  • Aris Papageorghiou
  • Cristian Lorenz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10554)

Abstract

In this paper, voxel probability maps generated by a novel fovea fully convolutional network architecture (FovFCN) are used as additional feature images in the context of a segmentation approach based on deformable shape models. The method is applied to fetal 3D ultrasound image data aiming at a segmentation of the abdominal outline of the fetal torso. This is of interest, e.g., for measuring the fetal abdominal circumference, a standard biometric measure in prenatal screening. The method is trained on 126 3D ultrasound images and tested on 30 additional scans. The results show that the approach can successfully combine the advantages of FovFCNs and deformable shape models in the context of challenging image data, such as given by fetal ultrasound. With a mean error of 2.24 mm, the combination of model-based segmentation and neural networks outperforms the separate approaches.

References

  1. 1.
    Ballard, D.H.: Generalizing the hough transform to detect arbitrary shapes. Pattern Recogn. 13(2), 111–122 (1981)CrossRefzbMATHGoogle Scholar
  2. 2.
    Brosch, T., Tang, L.Y.W., Yoo, Y., Li, D.K.B., Traboulsee, A., Tam, R.: Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE Trans. Med. Imaging 35(5), 1229–1239 (2016)CrossRefGoogle Scholar
  3. 3.
    Buerger, C., Peters, J., Waechter-Stehle, I., Weber, F.M., Klinder, T., Renisch, S.: Multi-modal vertebra segmentation from MR dixon for hybrid whole-body PET/MR. In: Yao, J., Klinder, T., Li, S. (eds.) Computational Methods and Clinical Applications for Spine Imaging. LNCVB, vol. 17, pp. 159–171. Springer, Cham (2014). doi: 10.1007/978-3-319-07269-2_14 Google Scholar
  4. 4.
    Ciresan, D., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 2843–2851 (2012)Google Scholar
  5. 5.
    Kamnitsas, K., Ledig, C., Newcombe, V.F., Simpson, J.P., Kane, A.D., Menon, D.K., Rueckert, D., Glocker, B.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)CrossRefGoogle Scholar
  6. 6.
    Korez, R., Likar, B., Pernuš, F., Vrtovec, T.: Model-based segmentation of vertebral bodies from mr images with 3D CNNs. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 433–441. Springer, Cham (2016). doi: 10.1007/978-3-319-46723-8_50 CrossRefGoogle Scholar
  7. 7.
    Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: IEEE International Conference on Computer Vision (ICCV), pp. 1520–1528 (2015)Google Scholar
  8. 8.
    Papageorghiou, A.T., et al.: International standards for fetal growth based on serial ultrasound measurements: The Fetal Growth Longitudinal Study of the INTERGROWTH-21st Project. Lancet 384, 869–879 (2014)CrossRefGoogle Scholar
  9. 9.
    Raynaud, C., Ciofolo-Veit, C., Lefèvre, T., Ardon, R., Cavallaro, A., Salim, I., Papageorghiou, A., Rouet, L.: Multi-organ detection in 3D fetal ultrasound with machine learning. In: MICCAI Workshop on Fetal and InFant Image Analysis (FIFI 2017) (2017)Google Scholar
  10. 10.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). doi: 10.1007/978-3-319-24574-4_28 CrossRefGoogle Scholar
  11. 11.
    Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017)CrossRefGoogle Scholar
  12. 12.
    Waechter-Stehle, I., Klinder, T., Rouet, J.M., Roundhill, D., Andrews, G., Cavallaro, A., Molloholli, M., Norris, T., Napolitano, R., Papageorghiou, A., et al.: Learning from redundant but inconsistent reference data: anatomical views and measurements for fetal brain screening. In: SPIE Medical Imaging, p. 97841A (2016)Google Scholar
  13. 13.
    Weese, J., Kaus, M., Lorenz, C., Lobregt, S., Truyen, R., Pekar, V.: Shape constrained deformable models for 3-D medical image segmentation. In: Information Processing in Medical Imaging (IPMI), vol. 2082, pp. 380–387 (2001)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alexander Schmidt-Richberg
    • 1
    Email author
  • Tom Brosch
    • 1
  • Nicole Schadewaldt
    • 1
  • Tobias Klinder
    • 1
  • Angelo Cavallaro
    • 3
  • Ibtisam Salim
    • 3
  • David Roundhill
    • 2
  • Aris Papageorghiou
    • 3
  • Cristian Lorenz
    • 1
  1. 1.Philips Research Laboratories HamburgHamburgGermany
  2. 2.Philips UltrasoundBothellUSA
  3. 3.Nuffield Department of Obstetrics and GynaecologyUniverity of OxfordOxfordUK

Personalised recommendations