Development of Clinically Based Corneal Nerves Tortuosity Indexes

  • Fabio ScarpaEmail author
  • Alfredo Ruggeri
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10554)


In-vivo specular microscopy provides information on the corneal health state. The correlation between corneal nerve tortuosity and pathology has been shown several times. However, because there is no unique formal definition of tortuosity, reproducibility is poor. Recently, two distinct forms of corneal nerve tortuosity have been identified, describing either short-range or long-range directional changes. Using 30 images and their manual grading provided by 7 experts, we automatically traced corneal nerves with a custom computerized procedure and identified the combination of geometrical measurements that best represents each tortuosity definition (Spearman Rank Correlation equal to 0.94 and 0.88, respectively). Then, we evaluated both of these tortuosity indexes in 100 images from 10 healthy and 10 diabetic subjects (5 images per subject). A Linear Discriminant Analysis showed a very good capability (accuracy 85%) to differentiate healthy subjects from pathological ones by using both tortuosity indexes together.


Corneal nerves Corneal images Specular microscopy In vivo microscopy Tortuosity 


  1. 1.
    Krachmer, J.H., Mannis, M.J., Holland, E.J.: Cornea: Fundamentals, Diagnosis and Management, vol. 1. Elsevier Mosby, Philadelphia (2005)Google Scholar
  2. 2.
    Marfurt, C.F., Cox, J., Deek, S., Dvorscak, L.: Anatomy of the human corneal innervation. Exp. Eye Res. 90(4), 478–492 (2010)CrossRefGoogle Scholar
  3. 3.
    del Castillo, J.M.B., Wasfy, M.A., Fernandez, C., Garcia-Sanchez, J.: An in vivo confocal masked study on corneal epithelium and subbasal nerves in patients with dry eye. Invest. Ophthalmol. Vis. Sci. 45(9), 3030–3035 (2004)CrossRefGoogle Scholar
  4. 4.
    Parissi, M., Randjelovic, S., Poletti, E., et al.: Corneal nerve regeneration after collagen cross-linking treatment of keratoconus: A 5-year longitudinal study. JAMA Ophthalmol. 134(1), 70–78 (2016)CrossRefGoogle Scholar
  5. 5.
    De Cillà, S., Ranno, S., Carini, E., et al.: Corneal subbasal nerves changes in patients with diabetic retinopathy: an in vivo confocal study. Invest. Ophthalmol. Vis. Sci. 50(11), 5155–5158 (2009)CrossRefGoogle Scholar
  6. 6.
    Kallinikos, P., Berhanu, M., O’Donnell, C., et al.: Corneal nerve tortuosity in diabetic patients with neuropathy. Invest. Ophthalmol. Vis. Sci. 45(2), 418–422 (2004)CrossRefGoogle Scholar
  7. 7.
    Lagali, N., Poletti, E., Patel, D.V., et al.: Focused tortuosity definitions based on expert clinical assessment of corneal subbasal nerves. Invest. Ophthalmol. Vis. Sci. 56(9), 5102–5109 (2015)CrossRefGoogle Scholar
  8. 8.
    Guimarães, P., Wigdahl, J., Ruggeri, A.: Automatic estimation of corneal nerves focused tortuosities. In: Conference Proceedings of the IEEE Engineering in Medicine and Biology Society, pp. 1332–1335 (2016)Google Scholar
  9. 9.
    Guimarães, P., Wigdahl, J., Ruggeri, A.: A fast and efficient technique for the automatic tracing of corneal nerves in confocal microscopy. Transl. Vis. Sci. Technol. 5(5), 7 (2016)CrossRefGoogle Scholar
  10. 10.
    Smedby, O., Högman, N., Nilsson, S., et al.: Two-dimensional tortuosity of the superficial femoral artery in early atherosclerosis. J. Vasc. Res. 30(4), 181–191 (1993)CrossRefGoogle Scholar
  11. 11.
    Hart, W.E., Goldbaum, M., Cote, B., et al.: Measurement and classification of retinal vascular tortuosity. Int. J. Med. Inform. 53(2), 39–252 (1999)Google Scholar
  12. 12.
    Scarpa, F., Zheng, X., Ohashi, Y., Ruggeri, A.: Automatic evaluation of corneal nerve tortuosity in images from in vivo confocal microscopy. Invest. Ophthalmol. Vis. Sci. 52(9), 6404–6408 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Information EngineeringUniversity of PadovaPaduaItaly

Personalised recommendations