Assessing Reorganisation of Functional Connectivity in the Infant Brain

  • Roxane LicandroEmail author
  • Karl-Heinz Nenning
  • Ernst Schwartz
  • Kathrin Kollndorfer
  • Lisa Bartha-Doering
  • Hesheng Liu
  • Georg Langs
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10554)


As maturation of neural networks continues throughout childhood, brain lesions insulting immature networks have different impact on brain function than lesions obtained after full network maturation. Thus, longitudinal studies and analysis of spatial and temporal brain signal correlations are a key component to get a deeper understanding of individual maturation processes, their interaction and their link to cognition. Here, we assess the connectivity pattern deviation of developing resting state networks after ischaemic stroke of children between 7 and 17 years. We propose a method to derive a reorganisational score to detect target regions for overtaking affected functional regions within a stroke location. The evaluation is performed using rs-fMRI data of 16 control subjects and 16 stroke patients. The developing functional connectivity affected by ischaemic stroke exhibits significant differences to the control cohort. This suggests an influence of stroke location and developmental stage on regenerating processes and the reorganisational patterns.



This work was co-funded by the Oesterreichische Nationalbank (Anniversary Fund, project number 15356), by the FWF under KLI 544-B27 and I 2714-B31, by the European Commision FP7-PEOPLE-2013-IAPP 610872 and by ZIT Life Sciences 2014 (1207843).


  1. 1.
    Altman, N.R., Bernal, B.: Clinical applications of functional magnetic resonance imaging. Pediatr. Radiol. 45(3), 382–396 (2015)CrossRefGoogle Scholar
  2. 2.
    Anderson, V., Spencer-Smith, M., Wood, A.: Do children really recover better? Neurobehavioural plasticity after early brain insult. Brain J. Neurol. 134(Pt 8), 2197–221 (2011)CrossRefGoogle Scholar
  3. 3.
    Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10(3), 186–198 (2009)CrossRefGoogle Scholar
  4. 4.
    Casey, B., Tottenham, N., Liston, C., Durston, S.: Imaging the developing brain: what have we learned about cognitive development? TiCS 9(3), 104–110 (2005)Google Scholar
  5. 5.
    Fair, D.A., Cohen, A.L., Power, J.D., Dosenbach, N.U.F., Church, J.A., Miezin, F.M., Schlaggar, B.L., Petersen, S.E.: Functional brain networks develop from a “local to distributed” organization. PLoS Comput. Biol. 5(5), e1000381 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Fischl, B.: FreeSurfer. Neuroimage 62(2), 774–781 (2012)CrossRefGoogle Scholar
  7. 7.
    Fischl, B., Sereno, M.I., Tootell, R.B., Dale, A.M.: High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum. Brain Mapp. 8(4), 272–84 (1999)CrossRefGoogle Scholar
  8. 8.
    Gao, W., Zhu, H., Giovanello, K.S., Smith, J.K., Shen, D., Gilmore, J.H., Lin, W.: Evidence on the emergence of the brain’s default network from 2-week-old to 2-year-old healthy pediatric subjects. Proc. Natl. Acad. Sci. U.S.A. 106(16), 6790–6795 (2009)CrossRefGoogle Scholar
  9. 9.
    Huttenlocher, P.R.: Neural Plasticity: The Effects of Environment on the Development of the Cerebral Cortex. Harvard University Press, Cambridge (2002)Google Scholar
  10. 10.
    Ius, T., Angelini, E., Thiebaut de Schotten, M., Mandonnet, E., Duffau, H.: Evidence for potentials and limitations of brain plasticity using an atlas of functional resectability of WHO grade II gliomas: towards a minimal common brain. NeuroImage 56(3), 992–1000 (2011)CrossRefGoogle Scholar
  11. 11.
    Jenkinson, M., Beckmann, C.F., Behrens, T.E.J., Woolrich, M.W., Smith, S.M.: FSL. NeuroImage 62(2), 782–90 (2012)CrossRefGoogle Scholar
  12. 12.
    Johnston, M.V.: Plasticity in the developing brain: implications for rehabilitation. Dev. Disabil. Res. Rev. 15(2), 94–101 (2009)CrossRefGoogle Scholar
  13. 13.
    Kornfeld, S., Delgado Rodríguez, J.A., Everts, R., Kaelin-Lang, A., Wiest, R., Weisstanner, C., Mordasini, P., Steinlin, M., Grunt, S.: Cortical reorganisation of cerebral networks after childhood stroke: impact on outcome. BMC Neurol. 15(1), 90 (2015)CrossRefGoogle Scholar
  14. 14.
    La Corte, V., Sperduti, M., Malherbe, C., Vialatte, F., Lion, S., Gallarda, T., Oppenheim, C., Piolino, P.: Cognitive decline and reorganization of functional connectivity in healthy aging: the pivotal role of the salience network in the prediction of age and cognitive performances. Front. Aging Neurosci. 8, 204 (2016)CrossRefGoogle Scholar
  15. 15.
    Lynch, J.K., Han, C.J.: Pediatric stroke - what do we know and what do we need to know? Semin. Neurol. 25(4), 410–423 (2005)CrossRefGoogle Scholar
  16. 16.
    Mueller, S., Wang, D., Fox, M.D., Yeo, B.T.T., Sepulcre, J., Sabuncu, M.R., Shafee, R., Lu, J., Liu, H.: Individual variability in functional connectivity architecture of the human brain. Neuron 77(3), 586–595 (2013)CrossRefGoogle Scholar
  17. 17.
    Power, J.D., Fair, D.A., Schlaggar, B.L., Petersen, S.E.: The development of human functional brain networks. Neuron 67(5), 735–48 (2010)CrossRefGoogle Scholar
  18. 18.
    Sepulcre, J., Liu, H., Talukdar, T., Martincorena, I., Thomas Yeo, B.T., Buckner, R.L.: The organization of local and distant functional connectivity in the human brain. PLoS Comput. Biol. 6(6), 1–15 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Tsze, D.S., Valente, J.H.: Pediatric stroke: a review. Emerg. Med. Int. 2011, 734506 (2011)CrossRefGoogle Scholar
  20. 20.
    Yeo, B.T.T., Krienen, F.M., Sepulcre, J., Sabuncu, M.R., Lashkari, D., Hollinshead, M., Roffman, J.L., Smoller, J.W., Zöllei, L., Polimeni, J.R., Fischl, B., Liu, H., Buckner, R.L.: The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106(3), 1125–65 (2011)CrossRefGoogle Scholar
  21. 21.
    Zilles, K., Palomero-Gallagher, N., Amunts, K.: Development of cortical folding during evolution and ontogeny. Trends Neurosci. 36(5), 275–284 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Roxane Licandro
    • 1
    • 2
    Email author
  • Karl-Heinz Nenning
    • 2
  • Ernst Schwartz
    • 2
  • Kathrin Kollndorfer
    • 2
  • Lisa Bartha-Doering
    • 3
  • Hesheng Liu
    • 4
  • Georg Langs
    • 2
  1. 1.Institute of Computer Aided Automation - Computer Vision LabVienna University of TechnologyViennaAustria
  2. 2.Department of Biomedical Imaging and Image-guided Therapy - Computational Imaging Research LabMedical University of ViennaViennaAustria
  3. 3.Department of Pediatrics and Adolescent MedicineMedical University of ViennaViennaAustria
  4. 4.Department of Radiology, Martinos Center, MGHHarvard Medical SchoolBostonUSA

Personalised recommendations