Non-rigid Registration of Retinal OCT Images Using Conditional Correlation Ratio

  • Xueying DuEmail author
  • Lun GongEmail author
  • Fei Shi
  • Xinjian Chen
  • Xiaodong Yang
  • Jian Zheng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10554)


In this work, we propose a novel similarity measure for non-rigid retinal optical coherence tomography image registration called conditional correlation ratio (CCR). CCR calculates the correlation ratio (CR) between the moving and fixed image intensities, given a certain spatial distribution. The proposed CCR-based registration is robust to noise and less sensitive to the number of samples used to estimation the density function. Compared to mutual information (MI) and CR, both the quantitative indicators using Hausdorff distance (HD) and M-Hausdorff distance (MHD) and the qualitative indicator using checkerboard images show that CCR is more suitable to align the retinal OCT images.


Optical coherence tomography Non-rigid registration Spatial information Conditional correlation ratio 



This work was supported in part by the National Program on Key Research and Development Project (No. 2016YFC0103500, No. 2016YFC0103502, No. 2016YFC0104500, No. 2016YFC0104505), National Natural Science Foundation of China (No. 61201117), the Natural Science Foundation of Jiangsu Province (No. BK20151232), and the Youth Innovation Promotion Association CAS (No. 2014281).


  1. 1.
    Tearney, G.J.: In vivo endoscopic optical biopsy with optical coherence tomography. Science 276(80), 2037–2039 (1997)CrossRefGoogle Scholar
  2. 2.
    Jonas, J.B., Kreissig, I., Degenring, R.: Intraocular pressure after intravitreal injection of triamcinolone acetonide. Br. J. Ophthalmol. 87, 24–27 (2003)CrossRefGoogle Scholar
  3. 3.
    Niemeijer, M., Garvin, M.K., Lee, K., van Ginneken, B., Abràmoff, M.D., Sonka, M.: Registration of 3D spectral OCT volumes using 3D SIFT feature point matching. In: Proceedings of the SPIE 7259, 72591I (2009)Google Scholar
  4. 4.
    Wu, J., Gerendas, B.S., Waldstein, S.M., Langs, G., Simader, C., Schmidt-Erfurth, U.M.: Stable registration of pathological 3D SD-OCT scans using retinal vessels. In: Ophthalmic Medical Image Analysis First International Workshop, OMIA 2014, pp. 1–8 (2014)Google Scholar
  5. 5.
    Chen, M., Lang, A., Sotirchos, E., Ying, H.S., Calabresi, P.A., Prince, J.L., Carass, A.: Deformable registration of macular OCT using a-mode scan similarity, pp. 476–479 (2013)Google Scholar
  6. 6.
    Chen, Q.W., F.S.; W.Z.; D.X.; H.C.; X.: Nonrigid registration of 3D longitudinal optical coherence tomography volumes with choroidal neovascularization (2017)Google Scholar
  7. 7.
    Studholme, C., Drapaca, C., Iordanova, B., Cardenas, V.: Deformation-based mapping of volume change from serial brain MRI in the presence of local tissue contrast change. IEEE Trans. Med. Imaging 25, 626–639 (2006)CrossRefGoogle Scholar
  8. 8.
    Loeckx, D., Slagmolen, P., Maes, F., Vandermeulen, D., Suetens, P.: Nonrigid image registration using conditional mutual information. IEEE Trans. Med. Imaging 29, 1–2 (2010)CrossRefGoogle Scholar
  9. 9.
    Rivaz, H., Chen, S.J.S., Collins, D.L.: Automatic deformable MR-ultrasound registration for image-guided neurosurgery. IEEE Trans. Med. Imaging 34, 366–380 (2015)CrossRefGoogle Scholar
  10. 10.
    Gong, L., Wang, H., Peng, C., Dai, Y., Ding, M., Sun, Y., Yang, X., Zheng, J.: Non-rigid MR-TRUS image registration for image-guided prostate biopsy using correlation ratio-based mutual information. Biomed. Eng. Online 16, 8 (2017)CrossRefGoogle Scholar
  11. 11.
    Roche, A., Malandain, G., Pennec, X., Ayache, N.: The correlation ratio as a new similarity measure for multimodal image registration. In: Wells, William M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 1115–1124. Springer, Heidelberg (1998). doi: 10.1007/BFb0056301 CrossRefGoogle Scholar
  12. 12.
    Xu, R., Member, S., Chen, Y., Tang, S., Morikawa, S.: Parzen-window based normalized mutual information for medical image registration. IEICE – Trans. Inf. Syst. E91-D(1), 132–144 (2015)CrossRefGoogle Scholar
  13. 13.
    Suh, J.W., Kwon, O.-K., Scheinost, D., Sinusas, A.J., Cline, G.W., Papademetris, X.: CT-PET weighted image fusion for separately scanned whole body rat. Med. Phys. 39, 533–542 (2012)CrossRefGoogle Scholar
  14. 14.
    Shi, F., Chen, X., Zhao, H., Zhu, W., Xiang, D., Gao, E., Sonka, M., Chen, H.: Automated 3-D retinal layer segmentation of macular optical coherence tomography images with serous pigment epithelial detachments. IEEE Trans. Med. Imaging 34, 441–452 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.School of Electronics and Information EngineeringSoochow UniversitySuzhouChina

Personalised recommendations