Advertisement

Template-Free Estimation of Intracranial Volume: A Preterm Birth Animal Model Study

  • Juan Eugenio IglesiasEmail author
  • Sebastiano Ferraris
  • Marc Modat
  • Willy Gsell
  • Jan Deprest
  • Johannes L. van der Merwe
  • Tom Vercauteren
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10554)

Abstract

Accurate estimation of intracranial volume (ICV) is key in neuro-imaging-based volumetric studies, since estimation errors directly propagate to the ICV-corrected volumes used in subsequent analyses. ICV estimation through registration to a reference atlas has the advantage of not requiring manually delineated data, and can thus be applied to populations for which labeled data might be inexistent or scarce, e.g., preterm born animal models. However, such method is not robust, since the estimation depends on a single registration. Here we present a groupwise, template-free ICV estimation method that overcomes this limitation. The method quickly aligns pairs of images using linear registration at low resolution, and then computes the most likely ICV values using a Bayesian framework. The algorithm is robust against single registration errors, which are corrected by registrations to other subjects. The algorithm was evaluated on a pilot dataset of rabbit brain MRI (\(N=7\)), in which the estimated ICV was highly correlated (\(\rho =0.99\)) with ground truth values derived from manual delineations. Additional regression and discrimination experiments with human hippocampal volume on a subset of ADNI (\(N=150\)) yielded reduced sample sizes and increased classification accuracy, compared with using a reference atlas.

Notes

Acknowledgement

Supported by ERC (677697), EPSRC (EP/L016478/1, EP/M506448/1), Wellcome/EPSRC (203145Z/16/Z, WT101957, NS/A000027/1).

References

  1. 1.
    Sanfilipo, M.P., Benedict, R.H., Zivadinov, R., Bakshi, R.: Correction for intracranial volume in analysis of whole brain atrophy in multiple sclerosis: the proportion vs. residual method. Neuroimage 22(4), 1732–1743 (2004)CrossRefGoogle Scholar
  2. 2.
    Lemieux, L., Hagemann, G., Krakow, K., Woermann, F.G.: Fast, accurate, and reproducible automatic segmentation of the brain in T1-weighted volume MRI data. Magn. Reson. Med. 42(1), 127–135 (1999)CrossRefGoogle Scholar
  3. 3.
    Smith, S.M., Zhang, Y., Jenkinson, M., Chen, J., Matthews, P., Federico, A., De Stefano, N.: Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 17(1), 479–489 (2002)CrossRefGoogle Scholar
  4. 4.
    Buckner, R.L., Head, D., Parker, J., Fotenos, A.F., Marcus, D., Morris, J.C., Snyder, A.Z.: A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume. Neuroimage 23(2), 724–738 (2004)CrossRefGoogle Scholar
  5. 5.
    Fischl, B.: Freesurfer. Neuroimage 62(2), 774–781 (2012)CrossRefGoogle Scholar
  6. 6.
    Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E., et al.: Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23, S208–S219 (2004)CrossRefGoogle Scholar
  7. 7.
    Ashburner, J., Friston, K.J.: Unified segmentation. Neuroimage 26(3), 839–851 (2005)CrossRefGoogle Scholar
  8. 8.
    Penny, W.D., Friston, K.J., Ashburner, J.T., Kiebel, S.J., Nichols, T.E.: Statistical Parametric Mapping: The Analysis of Functional Brain Images. Academic Press, New York (2011)Google Scholar
  9. 9.
    Keihaninejad, S., Heckemann, R.A., Fagiolo, G., Symms, M.R., Hajnal, J.V., Hammers, A.: A robust method to estimate the intracranial volume across MRI field strengths (1.5T and 3T). Neuroimage 50(4), 1427–1437 (2010)CrossRefGoogle Scholar
  10. 10.
    Huo, Y., Asman, A.J., Plassard, A.J., Landman, B.A.: Simultaneous total intracranial volume and posterior fossa volume estimation using multi-atlas label fusion. Hum. Brain Mapp. 2, 599–616 (2017)CrossRefGoogle Scholar
  11. 11.
    Manjón, J.V., Eskildsen, S.F., Coupé, P., Romero, J.E., Collins, D.L., Robles, M.: Nonlocal intracranial cavity extraction. Int. J. Biomed. Imaging 2014, 11 p. (2014). Article ID 820205. doi: 10.1155/2014/820205
  12. 12.
    Kuklisova-Murgasova, M., Aljabar, P., Srinivasan, L., Counsell, S.J., Doria, V., Serag, A., Gousias, I.S., Boardman, J.P., Rutherford, M.A., Edwards, A.D., et al.: A dynamic 4D probabilistic atlas of the developing brain. NeuroImage 54(4), 2750–2763 (2011)CrossRefGoogle Scholar
  13. 13.
    Licandro, R., Langs, G., Kasprian, G., Sablatnig, R., Prayer, D., Schwartz, E.: Longitudinal diffeomorphic atlas learning for fetal brain tissue labeling using geodesic regression. In: Brain 2011 (2011)Google Scholar
  14. 14.
    Tyson, J.E., Parikh, N.A., Langer, J., Green, C., Higgins, R.D.: Intensive care for extreme prematurity moving beyond gestational age. N. Engl. J. Med. 358(16), 1672–1681 (2008)CrossRefGoogle Scholar
  15. 15.
    Blencowe, H., Cousens, S., Oestergaard, M.Z., Chou, D., Moller, A.B., Narwal, R., Adler, A., Garcia, C.V., Rohde, S., Say, L., et al.: National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet 379(9832), 2162–2172 (2012)CrossRefGoogle Scholar
  16. 16.
    Liu, L., Johnson, H.L., Cousens, S., Perin, J., Scott, S., Lawn, J.E., Rudan, I., Campbell, H., Cibulskis, R., Li, M., et al.: Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet 379(9832), 2151–2161 (2012)CrossRefGoogle Scholar
  17. 17.
    Muñoz-Moreno, E., Arbat-Plana, A., Batalle, D., Soria, G., Illa, M., Prats-Galino, A., Eixarch, E., Gratacos, E.: A magnetic resonance image based atlas of the rabbit brain for automatic parcellation. PLoS ONE 8(7), e67418 (2013)CrossRefGoogle Scholar
  18. 18.
    Shewchuk, J.R.: An introduction to the conjugate gradient method without the agonizing pain (1994)Google Scholar
  19. 19.
    Modat, M., Cash, D.M., Daga, P., Winston, G.P., Duncan, J.S., Ourselin, S.: Global image registration using a symmetric block-matching approach. J. Med. Imaging 1(2), 024003–024003 (2014)CrossRefGoogle Scholar
  20. 20.
    Modat, M., Ridgway, G.R., Taylor, Z.A., Lehmann, M., Barnes, J., Hawkes, D.J., Fox, N.C., Ourselin, S.: Fast free-form deformation using graphics processing units. Comput. Methods Programs Biomed. 98(3), 278–284 (2010)CrossRefGoogle Scholar
  21. 21.
    Steiger, J.H.: Tests for comparing elements of a correlation matrix. Psychol. Bull. 87(2), 245–251 (1980)CrossRefGoogle Scholar
  22. 22.
    DeLong, E.R., DeLong, D.M., Clarke-Pearson, D.L.: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44, 837–845 (1988)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Juan Eugenio Iglesias
    • 1
    Email author
  • Sebastiano Ferraris
    • 1
  • Marc Modat
    • 1
  • Willy Gsell
    • 2
  • Jan Deprest
    • 2
    • 3
  • Johannes L. van der Merwe
    • 2
  • Tom Vercauteren
    • 2
    • 3
  1. 1.Translational Imaging GroupUniversity College London (UCL)LondonUK
  2. 2.Biomedical Sciences GroupKU LeuvenLeuvenBelgium
  3. 3.Wellcome/EPSRC Centre for Interventional and Surgical SciencesUCLLondonUK

Personalised recommendations