Adversarial Training and Dilated Convolutions for Brain MRI Segmentation

  • Pim Moeskops
  • Mitko Veta
  • Maxime W. Lafarge
  • Koen A. J. Eppenhof
  • Josien P. W. Pluim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10553)

Abstract

Convolutional neural networks (CNNs) have been applied to various automatic image segmentation tasks in medical image analysis, including brain MRI segmentation. Generative adversarial networks have recently gained popularity because of their power in generating images that are difficult to distinguish from real images.

In this study we use an adversarial training approach to improve CNN-based brain MRI segmentation. To this end, we include an additional loss function that motivates the network to generate segmentations that are difficult to distinguish from manual segmentations. During training, this loss function is optimised together with the conventional average per-voxel cross entropy loss.

The results show improved segmentation performance using this adversarial training procedure for segmentation of two different sets of images and using two different network architectures, both visually and in terms of Dice coefficients.

Keywords

Adversarial networks Deep learning Convolutional neural networks Dilated convolution Medical image segmentation Brain MRI 

Notes

Acknowledgements

The authors would like to thank the organisers of MRBrainS13 and the multi-atlas labelling challenge for providing the data. The authors gratefully acknowledge the support of NVIDIA Corporation with the donation of a Titan X Pascal GPU.

References

  1. 1.
    Dai, W., Doyle, J., Liang, X., Zhang, H., Dong, N., Li, Y., Xing, E.P.: SCAN: structure correcting adversarial network for chest X-rays organ segmentation. arXiv preprint arXiv:1703.08770 (2017)
  2. 2.
    Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., Lempitsky, V.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(59), 1–35 (2016)MathSciNetMATHGoogle Scholar
  3. 3.
    Ghafoorian, M., Karssemeijer, N., Heskes, T., Bergkamp, M., Wissink, J., Obels, J., Keizer, K., de Leeuw, F.E., van Ginneken, B., Marchiori, E., Platel, B.: Deep multi-scale location-aware 3D convolutional neural networks for automated detection of lacunes of presumed vascular origin. NeuroImage. Clin. 14, 391–399 (2017)Google Scholar
  4. 4.
    Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: NIPS, pp. 2672–2680 (2014)Google Scholar
  5. 5.
    Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P.M., Larochelle, H.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)CrossRefGoogle Scholar
  6. 6.
    Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML (2015)Google Scholar
  7. 7.
    Kamnitsas, K., et al.: Unsupervised domain adaptation in brain lesion segmentation with adversarial networks. In: Niethammer, M., Styner, M., Aylward, S., Zhu, H., Oguz, I., Yap, P.-T., Shen, D. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 597–609. Springer, Cham (2017). doi: 10.1007/978-3-319-59050-9_47 CrossRefGoogle Scholar
  8. 8.
    Kamnitsas, K., Ledig, C., Newcombe, V.F., Simpson, J.P., Kane, A.D., Menon, D.K., Rueckert, D., Glocker, B.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)CrossRefGoogle Scholar
  9. 9.
    Kohl, S., Bonekamp, D., Schlemmer, H.P., Yaqubi, K., Hohenfellner, M., Hadaschik, B., Radtke, J.P., Maier-Hein, K.: Adversarial networks for the detection of aggressive prostate cancer. arXiv preprint arXiv:1702.08014 (2017)
  10. 10.
    Landman, B.A., Ribbens, A., Lucas, B., Davatzikos, C., Avants, B., Ledig, C., Ma, D., Rueckert, D., Vandermeulen, D., Maes, F., Erus, G., Wang, J., Holmes, H., Wang, H., Doshi, J., Kornegay, J., Manjon, J., Hammers, A., Akhondi-Asl, A., Asman, A.J., Warfield, S.K.: MICCAI 2012 Workshop on Multi-Atlas Labeling. CreateSpace Independent Publishing Platform, Nice (2012)Google Scholar
  11. 11.
    Luc, P., Couprie, C., Chintala, S., Verbeek, J.: Semantic segmentation using adversarial networks. In: NIPS Workshop on Adversarial Training (2016)Google Scholar
  12. 12.
    Mendrik, A.M., Vincken, K.L., Kuijf, H.J., Breeuwer, M., Bouvy, W.H., de Bresser, J., Alansary, A., de Bruijne, M., Carass, A., El-Baz, A., Jog, A., Katyal, R., Khan, A.R., van der Lijn, F., Mahmood, Q., Mukherjee, R., van Opbroek, A., Paneri, S., Pereira, S., et al.: MRBrainS challenge: online evaluation framework for brain image segmentation in 3T MRI scans. Comput. Intel. Neurosci. 2015 (2015). Article No. 813696Google Scholar
  13. 13.
    Moeskops, P., Viergever, M.A., Mendrik, A.M., de Vries, L.S., Benders, M.J., Išgum, I.: Automatic segmentation of MR brain images with a convolutional neural network. IEEE Trans. Med. Imag. 35(5), 1252–1261 (2016)CrossRefGoogle Scholar
  14. 14.
    Moeskops, P., Wolterink, J.M., Velden, B.H.M., Gilhuijs, K.G.A., Leiner, T., Viergever, M.A., Išgum, I.: Deep learning for multi-task medical image segmentation in multiple modalities. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 478–486. Springer, Cham (2016). doi: 10.1007/978-3-319-46723-8_55 CrossRefGoogle Scholar
  15. 15.
    Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: ICLR (2016)Google Scholar
  16. 16.
    Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)MathSciNetMATHGoogle Scholar
  17. 17.
    Wolterink, J.M., Leiner, T., Viergever, M.A., Išgum, I.: Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans. Med. Imag. (2017). https://doi.org/10.1109/TMI.2017.2708987
  18. 18.
    Wolterink, J.M., Leiner, T., Viergever, M.A., Išgum, I.: Dilated convolutional neural networks for cardiovascular MR segmentation in congenital heart disease. In: Zuluaga, M.A., Bhatia, K., Kainz, B., Moghari, M.H., Pace, D.F. (eds.) RAMBO/HVSMR -2016. LNCS, vol. 10129, pp. 95–102. Springer, Cham (2017). doi: 10.1007/978-3-319-52280-7_9 CrossRefGoogle Scholar
  19. 19.
    Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In: ICLR (2016)Google Scholar
  20. 20.
    Zhang, W., Li, R., Deng, H., Wang, L., Lin, W., Ji, S., Shen, D.: Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. NeuroImage 108, 214–224 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Pim Moeskops
    • 1
  • Mitko Veta
    • 1
  • Maxime W. Lafarge
    • 1
  • Koen A. J. Eppenhof
    • 1
  • Josien P. W. Pluim
    • 1
  1. 1.Medical Image Analysis Group, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations