Automated Detection of Epileptogenic Cortical Malformations Using Multimodal MRI

  • Ravnoor S. Gill
  • Seok-Jun Hong
  • Fatemeh Fadaie
  • Benoit Caldairou
  • Boris Bernhardt
  • Neda Bernasconi
  • Andrea Bernasconi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10553)

Abstract

Focal cortical dysplasia (FCD), a malformation of cortical development, is a frequent cause of drug-resistant epilepsy. This surgically-amenable lesion is histologically characterized by cortical dyslamination, dysmorphic neurons, and balloon cells, which may extend into the immediate subcortical white matter. On MRI, FCD is typically associated with cortical thickening, blurring of the cortical boundary, and intensity anomalies. Notably, even histologically-verified FCD may not be clearly visible on preoperative MRI. We propose a novel FCD detection algorithm, which aggregates surface-based descriptors of morphology and intensity derived from T1-weighted (T1w) MRI, T2-weighted fluid attenuation inversion recovery (FLAIR) MRI, and FLAIR/T1w ratio images. Features were systematically sampled at multiple intracortical/subcortical levels and fed into a two-stage classifier for automated lesion detection based on ensemble learning. Using 5-fold cross-validation, we evaluated the approach in 41 patients with histologically-verified FCD and 38 age-and sex-matched healthy controls. Our approach showed excellent sensitivity (83%, 34/41 lesions detected) and specificity (92%, no findings in 35/38 controls), suggesting benefits for presurgical diagnostics.

Keywords

Magnetic resonance imaging Epilepsy Lesion detection Multiparametric MRI Presurgical diagnostics 

References

  1. 1.
    Sisodiya, S.M., Fauser, S., Cross, J.H., Thom, M.: Focal cortical dysplasia type II: biological features and clinical perspectives. Lancet Neurol. 8, 830–843 (2009)CrossRefGoogle Scholar
  2. 2.
    Bernasconi, A., Bernasconi, N., Bernhardt, B.C., Schrader, D.: Advances in MRI for “cryptogenic” epilepsies. Nat. Rev. Neurol. 7, 99–108 (2011)CrossRefGoogle Scholar
  3. 3.
    Colliot, O., Bernasconi, N., Khalili, N., Antel, S.B., Naessens, V., Bernasconi, A.: Individual voxel-based analysis of gray matter in focal cortical dysplasia. NeuroImage 29, 162–171 (2006)CrossRefGoogle Scholar
  4. 4.
    Focke, N.K., Bonelli, S.B., Yogarajah, M., Scott, C., Symms, M.R., Duncan, J.S.: Automated normalized FLAIR imaging in MRI-negative patients with refractory focal epilepsy. Epilepsia 50, 1484–1490 (2009)CrossRefGoogle Scholar
  5. 5.
    Besson, P., Andermann, F., Dubeau, F., Bernasconi, A.: Small focal cortical dysplasia lesions are located at the bottom of a deep sulcus. Brain J. Neurol. 131, 3246–3255 (2008)CrossRefGoogle Scholar
  6. 6.
    Thesen, T., Quinn, B.T., Carlson, C., Devinsky, O., DuBois, J., McDonald, C.R., French, J., Leventer, R., Felsovalyi, O., Wang, X., Halgren, E., Kuzniecky, R.: Detection of epileptogenic cortical malformations with surface-based MRI morphometry. PLoS ONE 6, e16430 (2011)CrossRefGoogle Scholar
  7. 7.
    Hong, S.-J., Kim, H., Schrader, D., Bernasconi, N., Bernhardt, B.C., Bernasconi, A.: Automated detection of cortical dysplasia type II in MRI-negative epilepsy. Neurology 83, 48–55 (2014)CrossRefGoogle Scholar
  8. 8.
    Adler, S., Wagstyl, K., Gunny, R., Ronan, L., Carmichael, D., Cross, J.H., Fletcher, P.C., Baldeweg, T.: Novel surface features for automated detection of focal cortical dysplasias in paediatric epilepsy. NeuroImage Clin. 14, 18–27 (2017)CrossRefGoogle Scholar
  9. 9.
    Kini, L.G., Gee, J.C., Litt, B.: Computational analysis in epilepsy neuroimaging: a survey of features and methods. NeuroImage Clin. 11, 515–529 (2016)CrossRefGoogle Scholar
  10. 10.
    Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 17, 87–97 (1998)CrossRefGoogle Scholar
  11. 11.
    Kim, H., Caldairou, B., Hwang, J.-W., Mansi, T., Hong, S.-J., Bernasconi, N., Bernasconi, A.: Accurate cortical tissue classification on MRI by modeling cortical folding patterns. Hum. Brain Mapp. 36, 3563–3574 (2015)CrossRefGoogle Scholar
  12. 12.
    Kim, J.S., Singh, V., Lee, J.K., Lerch, J., Ad-Dab’bagh, Y., MacDonald, D., Lee, J.M., Kim, S.I., Evans, A.C.: Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification. NeuroImage 27, 210–221 (2005)CrossRefGoogle Scholar
  13. 13.
    Lyttelton, O., Boucher, M., Robbins, S., Evans, A.: An unbiased iterative group registration template for cortical surface analysis. NeuroImage 34, 1535–1544 (2007)CrossRefGoogle Scholar
  14. 14.
    Polimeni, J.R., Fischl, B., Greve, D.N., Wald, L.L.: Laminar analysis of 7T BOLD using an imposed spatial activation pattern in human V1. NeuroImage 52, 1334–1346 (2010)CrossRefGoogle Scholar
  15. 15.
    Hong, S.-J., Bernhardt, B.C., Schrader, D., Caldairou, B., Bernasconi, N., Bernasconi, A.: MRI-based lesion profiling of epileptogenic cortical malformations. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 501–509. Springer International Publishing, Cham (2015)CrossRefGoogle Scholar
  16. 16.
    Shafee, R., Buckner, R.L., Fischl, B.: Gray matter myelination of 1555 human brains using partial volume corrected MRI images. NeuroImage 105, 473–485 (2015)CrossRefGoogle Scholar
  17. 17.
    Im, K., Lee, J.M., Lyttelton, O., Kim, S.H., Evans, A.C., Kim, S.I.: Brain size and cortical structure in the adult human brain. Cereb. Cortex 18, 2181–2191 (2008)CrossRefGoogle Scholar
  18. 18.
    Seiffert, C., Khoshgoftaar, T.M., Van Hulse, J., Napolitano, A.: RUSBoost: a hybrid approach to alleviating class imbalance. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 40, 185–197 (2010)CrossRefGoogle Scholar
  19. 19.
    Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 119–139 (1997)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63, 3–42 (2006)CrossRefMATHGoogle Scholar
  21. 21.
    Hong, S.-J., Bernhardt, B.C., Schrader, D.S., Bernasconi, N., Bernasconi, A.: Whole-brain MRI phenotyping in dysplasia-related frontal lobe epilepsy. Neurology 86, 643–650 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ravnoor S. Gill
    • 1
  • Seok-Jun Hong
    • 1
  • Fatemeh Fadaie
    • 1
  • Benoit Caldairou
    • 1
  • Boris Bernhardt
    • 1
  • Neda Bernasconi
    • 1
  • Andrea Bernasconi
    • 1
  1. 1.Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and HospitalMcGill UniversityMontrealCanada

Personalised recommendations