A Unified Framework for Tumor Proliferation Score Prediction in Breast Histopathology

  • Kyunghyun Paeng
  • Sangheum Hwang
  • Sunggyun Park
  • Minsoo Kim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10553)


We present a unified framework to predict tumor proliferation scores from breast histopathology whole slide images. Our system offers a fully automated solution to predicting both a molecular data-based, and a mitosis counting-based tumor proliferation score. The framework integrates three modules, each fine-tuned to maximize the overall performance: An image processing component for handling whole slide images, a deep learning based mitosis detection network, and a proliferation scores prediction module. We have achieved 0.567 quadratic weighted Cohen’s kappa in mitosis counting-based score prediction and 0.652 F1-score in mitosis detection. On Spearman’s correlation coefficient, which evaluates predictive accuracy on the molecular data based score, the system obtained 0.6171. Our approach won first place in all of the three tasks in Tumor Proliferation Assessment Challenge 2016 which is MICCAI grand challenge.


Tumor proliferation Mitosis detection Convolutional neural networks Breast histopathology 


  1. 1.
    Albarqouni, S., Baur, C., Achilles, F., Belagiannis, V., Demirci, S., Navab, N.: Aggnet: deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans. Med. Imaging 35(5), 1313–1321 (2016)CrossRefGoogle Scholar
  2. 2.
    Baak, J.P., van Diest, P.J., Voorhorst, F.J., van der Wall, E., Beex, L.V., Vermorken, J.B., Janssen, E.A.: Prospective multicenter validation of the independent prognostic value of the mitotic activity index in lymph node-negative breast cancer patients younger than 55 years. J. Clin. Oncol. 23(25), 5993–6001 (2005)CrossRefGoogle Scholar
  3. 3.
    Carpenter, A.E., Jones, T.R., Lamprecht, M.R., Clarke, C., Kang, I.H., Friman, O., Guertin, D.A., Chang, J.H., Lindquist, R.A., Moffat, J., et al.: Cellprofiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7(10), R100 (2006)CrossRefGoogle Scholar
  4. 4.
    Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 411–418. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40763-5_51 CrossRefGoogle Scholar
  5. 5.
    Elston, C.W., Ellis, I.O.: Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19(5), 403–410 (1991)CrossRefGoogle Scholar
  6. 6.
    He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. arXiv preprint arXiv:1603.05027 (2016)
  7. 7.
    Kamentsky, L., Jones, T.R., Fraser, A., Bray, M.A., Logan, D.J., Madden, K.L., Ljosa, V., Rueden, C., Eliceiri, K.W., Carpenter, A.E.: Improved structure, function and compatibility for cellprofiler: modular high-throughput image analysis software. Bioinformatics 27(8), 1179–1180 (2011)CrossRefGoogle Scholar
  8. 8.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)Google Scholar
  9. 9.
    Macenko, M., Niethammer, M., Marron, J.S., Borland, D., Woosley, J.T., Guan, X., Schmitt, C., Thomas, N.E.: A method for normalizing histology slides for quantitative analysis. In: ISBI, vol. 9, pp. 1107–1110 (2009)Google Scholar
  10. 10.
    Nielsen, T.O., Parker, J.S., Leung, S., Voduc, D., Ebbert, M., Vickery, T., Davies, S.R., Snider, J., Stijleman, I.J., Reed, J., et al.: A comparison of PAM50 intrinsic subtyping with immunohistochemistry and clinical prognostic factors in tamoxifen-treated estrogen receptor-positive breast cancer. Clin. Cancer Res. 16(21), 5222–5232 (2010)CrossRefGoogle Scholar
  11. 11.
    Otsu, N.: A threshold selection method from gray-level histograms. Automatica 11(285–296), 23–27 (1975)Google Scholar
  12. 12.
    Van Diest, P., Van Der Wall, E., Baak, J.: Prognostic value of proliferation in invasive breast cancer: a review. J. Clin. Pathol. 57(7), 675–681 (2004)CrossRefGoogle Scholar
  13. 13.
    Veta, M., van Diest, P.J., Jiwa, M., Al-Janabi, S., Pluim, J.P.: Mitosis counting in breast cancer: object-level interobserver agreement and comparison to an automatic method. PLoS ONE 11(8), e0161286 (2016)CrossRefGoogle Scholar
  14. 14.
    Veta, M., Van Diest, P.J., Willems, S.M., Wang, H., Madabhushi, A., Cruz-Roa, A., Gonzalez, F., Larsen, A.B., Vestergaard, J.S., Dahl, A.B., et al.: Assessment of algorithms for mitosis detection in breast cancer histopathology images. Med. Image Anal. 20(1), 237–248 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Kyunghyun Paeng
    • 1
  • Sangheum Hwang
    • 1
  • Sunggyun Park
    • 1
  • Minsoo Kim
    • 1
  1. 1.Lunit Inc.SeoulKorea

Personalised recommendations