Analyzing Microscopic Images of Peripheral Blood Smear Using Deep Learning

  • Dheeraj Mundhra
  • Bharath Cheluvaraju
  • Jaiprasad Rampure
  • Tathagato Rai Dastidar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10553)

Abstract

This paper presents a new automated peripheral blood smear analysis system, Shonit™ [1]. It consists of an automated microscope for capturing microscopic images of a blood sample, and a software component for analysis of the images. The software component employs an ensemble of deep learning models to analyze peripheral blood smear images for localization and classification of the three major blood cell types (red blood cells, white blood cells and platelets) and their subtypes [2]. We present the results of the classification and segmentation on a large variety of blood samples. The specificity and sensitivity of identification for the common cell types were above 98% and 91% respectively. The primary advantage of Shonit™over other automated blood smear analysis systems [3, 4, 5] is its robustness to quality variation in the blood smears, and the low cost of its image capture device.

References

  1. 1.
    SigTuple, Shonit™: The complete peripheral blood smear analysis solution. https://www.sigtuple.com. Accessed 1 May 2017
  2. 2.
    Bain, B.J.: A Beginner’s Guide to Blood Cells. Wiley, Chichester (2008)Google Scholar
  3. 3.
    Cellavision: Introducing CellaVision DM9600. http://www.cellavision.com/en/our-products/products/cellavision-dm9600. Accessed 20 Oct 2016
  4. 4.
    Roche Diagnostics Limited, cobas m511 integrated hematology analyser. http://www.cobas.com/home/product/hematology-testing/cobas-m-511.html. Accessed 15 Oct 2016
  5. 5.
    West Medica, Vision Hema Ultimate. http://visionhemaultimate.com/. Accessed 1 Nov 2016
  6. 6.
    Fujimoto, K.: Principles of measurement in hematology analyzers manufactured by Sysmex corporation. Sysmex J. Int. 9(1), 31–44 (1999). SEAS SUMGoogle Scholar
  7. 7.
    Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). doi: 10.1007/978-3-319-24574-4_28 CrossRefGoogle Scholar
  8. 8.
    Labo America, Lx 500. http://www.laboamerica.com/products/compound/lx500. Accessed 27 Sept 2016
  9. 9.
    Apple, iPhone 6s. http://www.apple.com/iphone-6s/. Accessed 1 Nov 2016
  10. 10.
    Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in neural information processing systems, pp. 91–99 (2015)Google Scholar
  11. 11.
    He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN (2017). arXiv preprint arXiv:1703.06870
  12. 12.
    Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 248–255. IEEE (2009)Google Scholar
  13. 13.
    Angulo, J., Flandrin, G.: Automated detection of working area of peripheral blood smears using mathematical morphology. Anal. Cell. Pathol. 25(1), 37–49 (2003)CrossRefGoogle Scholar
  14. 14.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)CrossRefGoogle Scholar
  15. 15.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)Google Scholar
  16. 16.
    Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)MathSciNetMATHGoogle Scholar
  17. 17.
    Rollins-Raval, M.A., Raval, J.S., Contis, L.: Experience with CellaVision DM96 for peripheral blood differentials in a large multi-center academic hospital system. J. Pathol. Inf. 3(1), 29 (2012)CrossRefGoogle Scholar
  18. 18.
    Kratz, A., et al.: Performance evaluation of the Cellavision DM96 system. Am. J. Clin. Pathol. 124(5), 770–781 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Dheeraj Mundhra
    • 1
  • Bharath Cheluvaraju
    • 1
  • Jaiprasad Rampure
    • 1
  • Tathagato Rai Dastidar
    • 1
  1. 1.SigTuple Technologies Pvt. Ltd.BangaloreIndia

Personalised recommendations