Skip to main content

A Deep Residual Inception Network for HEp-2 Cell Classification

  • Conference paper
  • First Online:
Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support (DLMIA 2017, ML-CDS 2017)

Abstract

Indirect-immunofluorescence (IIF) of Human Epithelial-2 (HEp-2) cells is a commonly-used method for the diagnosis of autoimmune diseases. Traditional approach relies on specialists to observe HEp-2 slides via the fluorescence microscope, which suffers from a number of shortcomings like being subjective and labor intensive. In this paper, we proposed a hybrid deep learning network combining the latest high-performance network architectures, i.e. ResNet and Inception, to automatically classify HEp-2 cell images. The proposed Deep Residual Inception (DRI) net replaces the plain convolutional layers in Inception with residual modules for better network optimization and fuses the features extracted from shallow, medium and deep layers for performance improvement. The proposed model is evaluated on publicly available I3A (Indirect Immunofluorescence Image Analysis) dataset. The experiment results demonstrate that our proposed DRI remarkably outperforms the benchmarking approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://nerone.diem.unisa.it/hep2-benchmarking/dbtools/.

References

  1. Foggia, P., Percannella, G., Soda, P., Vento, M.: Benchmarking HEp-2 cells classification methods. IEEE Trans. Med. Imag. 32, 1878–1889 (2013)

    Article  Google Scholar 

  2. Hobson, P., Lovell, B.C., Percannella, G., Vento, M., Wiliem, A.: Benchmarking human epithelial type 2 interphase cells classification methods on a very large dataset. Artif. Intell. Med. 65, 239–250 (2015)

    Article  Google Scholar 

  3. Hobson, P., Lovell, B.C., Percannella, G., Saggese, A., Vento, M., Wiliem, A.: HEp-2 staining pattern recognition at cell and specimen levels: datasets, algorithms and results. Pattern Recognit. Lett. 82, 12–22 (2016)

    Article  Google Scholar 

  4. Nosaka, R., Fukui, K.: HEp-2 cell classification using rotation invariant co-occurrence among local binary patterns. Pattern Recognit. 47, 2428–2436 (2014)

    Article  Google Scholar 

  5. Shen, L., Lin, J., Wu, S., Yu, S.: HEp-2 image classification using intensity order pooling based features and bag of words. Pattern Recognit. 47, 2419–2427 (2014)

    Article  Google Scholar 

  6. Manivannan, S., Li, W., Akbar, S., Wang, R., Zhang, J., Mckenna, S.J.: An automated pattern recognition system for classifying indirect immunofluorescence images of HEp-2 cells and specimens. Pattern Recognit. 51, 12–26 (2016)

    Article  Google Scholar 

  7. Xu, X., Lin, F., Ng, C., Leong, K.P.: Adaptive co-occurrence differential texton space for HEp-2 cells classification. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 260–267. Springer, Cham (2015). doi:10.1007/978-3-319-24574-4_31

    Chapter  Google Scholar 

  8. Taalimi, A., Ensafi, S., Qi, H., Lu, S., Kassim, A.A., Tan, C.L.: Multimodal dictionary learning and joint sparse representation for HEp-2 cell classification. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 308–315. Springer, Cham (2015). doi:10.1007/978-3-319-24574-4_37

    Chapter  Google Scholar 

  9. Kastaniotis, D., Fotopoulou, F., Theodorakopoulos, I., Economou, G., Fotopoulos, S.: HEp-2 cell classification with vector of hierarchically aggregated residuals. Pattern Recognit. 65, 47–57 (2017)

    Article  Google Scholar 

  10. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  11. Gao, Z., Wang, L., Zhou, L., Zhang, J.: HEp-2 cell image classification with deep convolutional neural networks. IEEE J. Biomed. Health Inform. 21(2), 416–428 (2016)

    Google Scholar 

  12. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv e-print arXiv:1409.1556 (2015)

  13. Bayramoglu, N., Kannala, J., Heikkila, J.: Human epithelial type 2 cell classification with convolutional neural networks. In: BIBE, pp. 1–6 (2015)

    Google Scholar 

  14. Phan, H.T.H., Kumar, A., Kim, J., Feng, D.: Transfer learning of a convolutional neural network for HEp-2 cell image classification. In: ISBI, pp. 1208–1211 (2016)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  16. Szegedy, C., Liu, W., Jia, Y., Sermanet, P.: Going deeper with convolutions. In: CVPR, pp. 1–9 (2015)

    Google Scholar 

  17. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-ResNet and the impact of residual connections on learning. arXiv e-print arXiv:1602.07261 (2016)

  18. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv e-print arXiv:1207.0580 (2012)

  19. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: ICCV, pp. 1026–1034 (2015)

    Google Scholar 

  20. Lecun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 541–551 (1989)

    Article  Google Scholar 

  21. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: ECCV, pp. 630–645 (2016)

    Google Scholar 

  22. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML, pp. 448–456 (2015)

    Google Scholar 

  23. Zhao, L., Wang, J., Li, X., Tu, Z., Zeng, W.: On the connection of deep fusion to ensembling. arXiv e-print arXiv:1611.07718 (2016)

  24. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. arXiv e-print arXiv:1408.5093 (2014)

  25. Jia, X., Shen, L., Zhou, X., Yu, S.: Deep convolutional neural network based HEp-2 cell classification. In: ICPR Contest and Workshop: Pattern Recognition Techniques for Indirect Immunofluorescence Images Analysis (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linlin Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Li, Y., Shen, L. (2017). A Deep Residual Inception Network for HEp-2 Cell Classification. In: Cardoso, M., et al. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support . DLMIA ML-CDS 2017 2017. Lecture Notes in Computer Science(), vol 10553. Springer, Cham. https://doi.org/10.1007/978-3-319-67558-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67558-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67557-2

  • Online ISBN: 978-3-319-67558-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics