Abstract

Indirect-immunofluorescence (IIF) of Human Epithelial-2 (HEp-2) cells is a commonly-used method for the diagnosis of autoimmune diseases. Traditional approach relies on specialists to observe HEp-2 slides via the fluorescence microscope, which suffers from a number of shortcomings like being subjective and labor intensive. In this paper, we proposed a hybrid deep learning network combining the latest high-performance network architectures, i.e. ResNet and Inception, to automatically classify HEp-2 cell images. The proposed Deep Residual Inception (DRI) net replaces the plain convolutional layers in Inception with residual modules for better network optimization and fuses the features extracted from shallow, medium and deep layers for performance improvement. The proposed model is evaluated on publicly available I3A (Indirect Immunofluorescence Image Analysis) dataset. The experiment results demonstrate that our proposed DRI remarkably outperforms the benchmarking approaches.

Keywords

HEp-2 cells Image classification Deep Learning Network 

References

  1. 1.
    Foggia, P., Percannella, G., Soda, P., Vento, M.: Benchmarking HEp-2 cells classification methods. IEEE Trans. Med. Imag. 32, 1878–1889 (2013)CrossRefGoogle Scholar
  2. 2.
    Hobson, P., Lovell, B.C., Percannella, G., Vento, M., Wiliem, A.: Benchmarking human epithelial type 2 interphase cells classification methods on a very large dataset. Artif. Intell. Med. 65, 239–250 (2015)CrossRefGoogle Scholar
  3. 3.
    Hobson, P., Lovell, B.C., Percannella, G., Saggese, A., Vento, M., Wiliem, A.: HEp-2 staining pattern recognition at cell and specimen levels: datasets, algorithms and results. Pattern Recognit. Lett. 82, 12–22 (2016)CrossRefGoogle Scholar
  4. 4.
    Nosaka, R., Fukui, K.: HEp-2 cell classification using rotation invariant co-occurrence among local binary patterns. Pattern Recognit. 47, 2428–2436 (2014)CrossRefGoogle Scholar
  5. 5.
    Shen, L., Lin, J., Wu, S., Yu, S.: HEp-2 image classification using intensity order pooling based features and bag of words. Pattern Recognit. 47, 2419–2427 (2014)CrossRefGoogle Scholar
  6. 6.
    Manivannan, S., Li, W., Akbar, S., Wang, R., Zhang, J., Mckenna, S.J.: An automated pattern recognition system for classifying indirect immunofluorescence images of HEp-2 cells and specimens. Pattern Recognit. 51, 12–26 (2016)CrossRefGoogle Scholar
  7. 7.
    Xu, X., Lin, F., Ng, C., Leong, K.P.: Adaptive co-occurrence differential texton space for HEp-2 cells classification. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 260–267. Springer, Cham (2015). doi: 10.1007/978-3-319-24574-4_31 CrossRefGoogle Scholar
  8. 8.
    Taalimi, A., Ensafi, S., Qi, H., Lu, S., Kassim, A.A., Tan, C.L.: Multimodal dictionary learning and joint sparse representation for HEp-2 cell classification. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 308–315. Springer, Cham (2015). doi: 10.1007/978-3-319-24574-4_37 CrossRefGoogle Scholar
  9. 9.
    Kastaniotis, D., Fotopoulou, F., Theodorakopoulos, I., Economou, G., Fotopoulos, S.: HEp-2 cell classification with vector of hierarchically aggregated residuals. Pattern Recognit. 65, 47–57 (2017)CrossRefGoogle Scholar
  10. 10.
    Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)CrossRefGoogle Scholar
  11. 11.
    Gao, Z., Wang, L., Zhou, L., Zhang, J.: HEp-2 cell image classification with deep convolutional neural networks. IEEE J. Biomed. Health Inform. 21(2), 416–428 (2016)Google Scholar
  12. 12.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv e-print arXiv:1409.1556 (2015)
  13. 13.
    Bayramoglu, N., Kannala, J., Heikkila, J.: Human epithelial type 2 cell classification with convolutional neural networks. In: BIBE, pp. 1–6 (2015)Google Scholar
  14. 14.
    Phan, H.T.H., Kumar, A., Kim, J., Feng, D.: Transfer learning of a convolutional neural network for HEp-2 cell image classification. In: ISBI, pp. 1208–1211 (2016)Google Scholar
  15. 15.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)Google Scholar
  16. 16.
    Szegedy, C., Liu, W., Jia, Y., Sermanet, P.: Going deeper with convolutions. In: CVPR, pp. 1–9 (2015)Google Scholar
  17. 17.
    Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-ResNet and the impact of residual connections on learning. arXiv e-print arXiv:1602.07261 (2016)
  18. 18.
    Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv e-print arXiv:1207.0580 (2012)
  19. 19.
    He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: ICCV, pp. 1026–1034 (2015)Google Scholar
  20. 20.
    Lecun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 541–551 (1989)CrossRefGoogle Scholar
  21. 21.
    He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: ECCV, pp. 630–645 (2016)Google Scholar
  22. 22.
    Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML, pp. 448–456 (2015)Google Scholar
  23. 23.
    Zhao, L., Wang, J., Li, X., Tu, Z., Zeng, W.: On the connection of deep fusion to ensembling. arXiv e-print arXiv:1611.07718 (2016)
  24. 24.
    Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. arXiv e-print arXiv:1408.5093 (2014)
  25. 25.
    Jia, X., Shen, L., Zhou, X., Yu, S.: Deep convolutional neural network based HEp-2 cell classification. In: ICPR Contest and Workshop: Pattern Recognition Techniques for Indirect Immunofluorescence Images Analysis (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Computer Vision InstituteShenzhen UniversityShenzhenChina

Personalised recommendations