Skip to main content

A Deep Level Set Method for Image Segmentation

Part of the Lecture Notes in Computer Science book series (LNIP,volume 10553)

Abstract

This paper proposes a novel image segmentation approach that integrates fully convolutional networks (FCNs) with a level set model. Compared with a FCN, the integrated method can incorporate smoothing and prior information to achieve an accurate segmentation. Furthermore, different than using the level set model as a post-processing tool, we integrate it into the training phase to fine-tune the FCN. This allows the use of unlabeled data during training in a semi-supervised setting. Using two types of medical imaging data (liver CT and left ventricle MRI data), we show that the integrated method achieves good performance even when little training data is available, outperforming the FCN or the level set model alone.

Keywords

  • Image segmentation
  • Level set
  • Deep learning
  • FCN
  • Semi-supervised learning
  • Shape prior

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-67558-9_15
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-67558-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

References

  1. Cremers, D., Rousson, M., Deriche, R.: A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape. Int. J. Comput. Vis. 72 (2007)

    Google Scholar 

  2. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    CrossRef  MATH  Google Scholar 

  3. Salah, M.B., Mitiche, A., Ayed, I.B.: Effective level set image segmentation with a kernel induced data term. Trans. Img. Proc. 19(1), 220–232 (2010)

    MathSciNet  CrossRef  MATH  Google Scholar 

  4. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  5. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). doi:10.1007/978-3-319-24574-4_28

    CrossRef  Google Scholar 

  6. Brosch, T., Yoo, Y., Tang, L.Y.W., Li, D.K.B., Traboulsee, A., Tam, R.: Deep convolutional encoder networks for multiple sclerosis lesion segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 3–11. Springer, Cham (2015). doi:10.1007/978-3-319-24574-4_1

    CrossRef  Google Scholar 

  7. BenTaieb, A., Hamarneh, G.: Topology aware fully convolutional networks for histology gland segmentation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 460–468. Springer, Cham (2016). doi:10.1007/978-3-319-46723-8_53

    CrossRef  Google Scholar 

  8. Kamnitsas, K., Ledig, C., Newcombe, V.F., Simpson, J.P., Kane, A.D., Menon, D.K., Glocker, B., Rueckert, D.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    CrossRef  Google Scholar 

  9. Cai, J., Lu, L., Zhang, Z., Xing, F., Yang, L., Yin, Q.: Pancreas segmentation in MRI using graph-based decision fusion on convolutional neural networks. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 442–450. Springer, Cham (2016). doi:10.1007/978-3-319-46723-8_51

    CrossRef  Google Scholar 

  10. Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D., Huang, C., Tor, P.H.S.: Conditional random fields as recurrent neural network. In: ICCV, pp. 1529–1537 (2015)

    Google Scholar 

  11. Ngo, T.A., Lu, Z., Carneiro, G.: Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance. Med. Image Anal. 35, 159–171 (2017)

    CrossRef  Google Scholar 

  12. Chen, F., Yu, H., Hu, R., Zeng, X.: Deep learning shape priors for object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1870–1877 (2013)

    Google Scholar 

  13. Paragios, N., Deriche, R.: Geodesic active regions: a new paradigm to deal with frame partition problems in computer vision. Vis. Commun. Image Representation 13, 249–268 (2002)

    CrossRef  Google Scholar 

  14. Cremers, D., Osher, S.J., Soatto, S.: Kernel density estimation and intrinsic alignment for shape priors in level set segmentation. Int. J. Comput. Vis. 69(3), 335–351 (2006)

    CrossRef  Google Scholar 

  15. Zeiler, M.D.: Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701 (2012)

  16. Van Ginneken, B., Heimann, T., Styner, M.: 3D segmentation in the clinic: a grand challenge, pp. 7–15 (2007)

    Google Scholar 

  17. Radau, P.: Cardiac MR Left Ventricle Segmentation Challenge (2008). http://smial.sri.utoronto.ca/LV_Challenge/Home.html.Accessed 10 Dec 2016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Tang, M., Valipour, S., Zhang, Z., Cobzas, D., Jagersand, M. (2017). A Deep Level Set Method for Image Segmentation. In: , et al. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support . DLMIA ML-CDS 2017 2017. Lecture Notes in Computer Science(), vol 10553. Springer, Cham. https://doi.org/10.1007/978-3-319-67558-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67558-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67557-2

  • Online ISBN: 978-3-319-67558-9

  • eBook Packages: Computer ScienceComputer Science (R0)