Advertisement

A Deep Level Set Method for Image Segmentation

  • Min Tang
  • Sepehr Valipour
  • Zichen Zhang
  • Dana Cobzas
  • Martin Jagersand
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10553)

Abstract

This paper proposes a novel image segmentation approach that integrates fully convolutional networks (FCNs) with a level set model. Compared with a FCN, the integrated method can incorporate smoothing and prior information to achieve an accurate segmentation. Furthermore, different than using the level set model as a post-processing tool, we integrate it into the training phase to fine-tune the FCN. This allows the use of unlabeled data during training in a semi-supervised setting. Using two types of medical imaging data (liver CT and left ventricle MRI data), we show that the integrated method achieves good performance even when little training data is available, outperforming the FCN or the level set model alone.

Keywords

Image segmentation Level set Deep learning FCN Semi-supervised learning Shape prior 

References

  1. 1.
    Cremers, D., Rousson, M., Deriche, R.: A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape. Int. J. Comput. Vis. 72 (2007)Google Scholar
  2. 2.
    Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)CrossRefMATHGoogle Scholar
  3. 3.
    Salah, M.B., Mitiche, A., Ayed, I.B.: Effective level set image segmentation with a kernel induced data term. Trans. Img. Proc. 19(1), 220–232 (2010)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)Google Scholar
  5. 5.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). doi: 10.1007/978-3-319-24574-4_28 CrossRefGoogle Scholar
  6. 6.
    Brosch, T., Yoo, Y., Tang, L.Y.W., Li, D.K.B., Traboulsee, A., Tam, R.: Deep convolutional encoder networks for multiple sclerosis lesion segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 3–11. Springer, Cham (2015). doi: 10.1007/978-3-319-24574-4_1 CrossRefGoogle Scholar
  7. 7.
    BenTaieb, A., Hamarneh, G.: Topology aware fully convolutional networks for histology gland segmentation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 460–468. Springer, Cham (2016). doi: 10.1007/978-3-319-46723-8_53 CrossRefGoogle Scholar
  8. 8.
    Kamnitsas, K., Ledig, C., Newcombe, V.F., Simpson, J.P., Kane, A.D., Menon, D.K., Glocker, B., Rueckert, D.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)CrossRefGoogle Scholar
  9. 9.
    Cai, J., Lu, L., Zhang, Z., Xing, F., Yang, L., Yin, Q.: Pancreas segmentation in MRI using graph-based decision fusion on convolutional neural networks. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 442–450. Springer, Cham (2016). doi: 10.1007/978-3-319-46723-8_51 CrossRefGoogle Scholar
  10. 10.
    Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D., Huang, C., Tor, P.H.S.: Conditional random fields as recurrent neural network. In: ICCV, pp. 1529–1537 (2015)Google Scholar
  11. 11.
    Ngo, T.A., Lu, Z., Carneiro, G.: Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance. Med. Image Anal. 35, 159–171 (2017)CrossRefGoogle Scholar
  12. 12.
    Chen, F., Yu, H., Hu, R., Zeng, X.: Deep learning shape priors for object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1870–1877 (2013)Google Scholar
  13. 13.
    Paragios, N., Deriche, R.: Geodesic active regions: a new paradigm to deal with frame partition problems in computer vision. Vis. Commun. Image Representation 13, 249–268 (2002)CrossRefGoogle Scholar
  14. 14.
    Cremers, D., Osher, S.J., Soatto, S.: Kernel density estimation and intrinsic alignment for shape priors in level set segmentation. Int. J. Comput. Vis. 69(3), 335–351 (2006)CrossRefGoogle Scholar
  15. 15.
    Zeiler, M.D.: Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701 (2012)
  16. 16.
    Van Ginneken, B., Heimann, T., Styner, M.: 3D segmentation in the clinic: a grand challenge, pp. 7–15 (2007)Google Scholar
  17. 17.
    Radau, P.: Cardiac MR Left Ventricle Segmentation Challenge (2008). http://smial.sri.utoronto.ca/LV_Challenge/Home.html.Accessed 10 Dec 2016

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Min Tang
    • 1
  • Sepehr Valipour
    • 1
  • Zichen Zhang
    • 1
  • Dana Cobzas
    • 1
  • Martin Jagersand
    • 1
  1. 1.Department of Computing ScienceUniversity of AlbertaEdmontonCanada

Personalised recommendations