Advertisement

Computationally Efficient Cardiac Views Projection Using 3D Convolutional Neural Networks

  • Matthieu Le
  • Jesse Lieman-Sifry
  • Felix Lau
  • Sean Sall
  • Albert Hsiao
  • Daniel Golden
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10553)

Abstract

4D Flow is an MRI sequence which allows acquisition of 3D images of the heart. The data is typically acquired volumetrically, so it must be reformatted to generate cardiac long axis and short axis views for diagnostic interpretation. These views may be generated by placing 6 landmarks: the left and right ventricle apex, and the aortic, mitral, pulmonary, and tricuspid valves. In this paper, we propose an automatic method to localize landmarks in order to compute the cardiac views. Our approach consists of first calculating a bounding box that tightly crops the heart, followed by a landmark localization step within this bounded region. Both steps are based on a 3D extension of the recently introduced ENet. We demonstrate that the long and short axis projections computed with our automated method are of equivalent quality to projections created with landmarks placed by an experienced cardiac radiologist, based on a blinded test administered to a different cardiac radiologist.

References

  1. 1.
    Payer, C., Štern, D., Bischof, H., Urschler, M.: Regressing heatmaps for multiple landmark localization using CNNs. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 230–238. Springer, Cham (2016). doi: 10.1007/978-3-319-46723-8_27 CrossRefGoogle Scholar
  2. 2.
    Ghesu, F.C., Georgescu, B., Mansi, T., Neumann, D., Hornegger, J., Comaniciu, D.: An artificial agent for anatomical landmark detection in medical images. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 229–237. Springer, Cham (2016). doi: 10.1007/978-3-319-46726-9_27 CrossRefGoogle Scholar
  3. 3.
    Lu, X., Jolly, M.-P., Georgescu, B., Hayes, C., Speier, P., Schmidt, M., Bi, X., Kroeker, R., Comaniciu, D., Kellman, P., Mueller, E., Guehring, J.: Automatic view planning for Cardiac MRI acquisition. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6893, pp. 479–486. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-23626-6_59 CrossRefGoogle Scholar
  4. 4.
    Pfister, T., Charles, J., Zisserman, A.: Flowing convnets for human pose estimation in videos. In: ICCV, pp. 1913–1921 (2015)Google Scholar
  5. 5.
    Paszke, A., et al.: Enet: a deep neural network architecture for real-time semantic segmentation arXiv:1606.02147 (2016)
  6. 6.
    Zuiderveld, K.: Contrast limited adaptive histogram equalization. In: Graphics gems IV. Academic Press Professional Inc., pp. 474–485 (1994)Google Scholar
  7. 7.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE CVPR, pp. 770–778 (2016)Google Scholar
  8. 8.
    Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions arXiv:1511.07122 (2015)
  9. 9.
    Kingma, D., Ba, J.: Adam: a method for stochastic optimization arXiv:1412.6980 (2014)
  10. 10.
    Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network arXiv:1612.01105 (2016)
  11. 11.
    Ilankathir, S.: A cadaveric study on adult human heart valve annular circumference and its clinical significance. IOSR-JDMS 1(14), 60–64 (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Matthieu Le
    • 1
  • Jesse Lieman-Sifry
    • 1
  • Felix Lau
    • 1
  • Sean Sall
    • 1
  • Albert Hsiao
    • 1
  • Daniel Golden
    • 1
  1. 1.Arterys Inc.San FranciscoUSA

Personalised recommendations