Advertisement

Domain-Adversarial Neural Networks to Address the Appearance Variability of Histopathology Images

  • Maxime W. Lafarge
  • Josien P. W. Pluim
  • Koen A. J. Eppenhof
  • Pim Moeskops
  • Mitko Veta
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10553)

Abstract

Preparing and scanning histopathology slides consists of several steps, each with a multitude of parameters. The parameters can vary between pathology labs and within the same lab over time, resulting in significant variability of the tissue appearance that hampers the generalization of automatic image analysis methods. Typically, this is addressed with ad-hoc approaches such as staining normalization that aim to reduce the appearance variability. In this paper, we propose a systematic solution based on domain-adversarial neural networks. We hypothesize that removing the domain information from the model representation leads to better generalization. We tested our hypothesis for the problem of mitosis detection in breast cancer histopathology images and made a comparative analysis with two other approaches. We show that combining color augmentation with domain-adversarial training is a better alternative than standard approaches to improve the generalization of deep learning methods.

Keywords

Domain-adversarial training Histopathology image analysis 

References

  1. 1.
    Tumor proliferation assessment challenge 2016. http://tupac.tue-image.nl
  2. 2.
    Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 411–418. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40763-5_51 CrossRefGoogle Scholar
  3. 3.
    Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., Lempitsky, V.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(59), 1–35 (2016)MathSciNetMATHGoogle Scholar
  4. 4.
    Kamnitsas, K., Baumgartner, C., Ledig, C., Newcombe, V., Simpson, J., Kane, A., Menon, D., Nori, A., Criminisi, A., Rueckert, D., Glocker, B.: Unsupervised domain adaptation in brain lesion segmentation with adversarial networks. In: Niethammer, M., Styner, M., Aylward, S., Zhu, H., Oguz, I., Yap, P.-T., Shen, D. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 597–609. Springer, Cham (2017). doi: 10.1007/978-3-319-59050-9_47 CrossRefGoogle Scholar
  5. 5.
    van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)Google Scholar
  6. 6.
    Macenko, M., Niethammer, M., Marron, J., Borland, D., Woosley, J.T., Guan, X., Schmitt, C., Thomas, N.E.: A method for normalizing histology slides for quantitative analysis. In: IEEE ISBI 2009, pp. 1107–1110 (2009)Google Scholar
  7. 7.
    Ruifrok, A.C., Johnston, D.A., et al.: Quantification of histochemical staining by color deconvolution. Anal. Quant. Cytol. 23(4), 291–299 (2001)Google Scholar
  8. 8.
    Veta, M., van Diest, P.J., Jiwa, M., Al-Janabi, S., Pluim, J.P.: Mitosis counting in breast cancer: object-level interobserver agreement and comparison to an automatic method. PloS one 11(8), e0161286 (2016)Google Scholar
  9. 9.
    Veta, M., Van Diest, P.J., Willems, S.M., Wang, H., Madabhushi, A., Cruz-Roa, A., Gonzalez, F., Larsen, A.B., Vestergaard, J.S., Dahl, A.B., et al.: Assessment of algorithms for mitosis detection in breast cancer histopathology images. Med. Image Anal. 20(1), 237–248 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Maxime W. Lafarge
    • 1
  • Josien P. W. Pluim
    • 1
  • Koen A. J. Eppenhof
    • 1
  • Pim Moeskops
    • 1
  • Mitko Veta
    • 1
  1. 1.Medical Image Analysis Group, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations