Physiology and Pathology of Aging

  • Calvin H. Hirsch
  • Ana Hategan


In older adults, acute and chronic illness, including late-onset psychiatric disorders, occur within the context of age-related alterations in physiology at the organ-system, cellular, and genomic levels. Some of these changes reflect the ineluctable response to normal aging, but their onset and severity often are influenced by patient behaviors (e.g., smoking, lifestyle) and the environment (e.g., culturally influenced diets, environmental toxins). These age-related changes affect virtually all organ systems and increase the vulnerability of older adults to functional decline, disability, and organ-system dysfunction, thereby contributing to the burden of multiple comorbidities. This chapter discusses general principles of aging and age-related changes in the function of individual organ systems that should be considered by the psychiatrist in the diagnosis and management of the older psychiatric patient.


Aging Physiology of aging Age-related physiological changes Pathophysiology of aging Geriatric patient Aged 


  1. 1.
    Milman S, Barzilai N. Dissecting the mechanisms underlying unusually successful human health span and life span. Cold Spring Harb Perspect Med. 2015;6(1).
  2. 2.
    Tinetti ME, Inouye SK, Gill TM, Doucette JT. Shared risk factors for falls, incontinence, and functional dependence. Unifying the approach to geriatric syndromes. JAMA. 1995;273(17):1348–53.PubMedCrossRefGoogle Scholar
  3. 3.
    Whitson HE, Duan-Porter W, Schmader KE, Morey MC, Cohen HJ, Colon-Emeric CS. Physical resilience in older adults: systematic review and development of an emerging construct. J Gerontol Series A Biol Sci Med Sci. 2016;71(4):489–95.CrossRefGoogle Scholar
  4. 4.
    Blodgett J, Theou O, Kirkland S, Andreou P, Rockwood K. Frailty in NHANES: comparing the frailty index and phenotype. Arch Gerontol Geriatr. 2015;60(3):464–70.PubMedCrossRefGoogle Scholar
  5. 5.
    Fried LP, Ferrucci L, Darer J, Williamson JD, Anderson G. Untangling the concepts of disability, frailty, and comorbidity: implications for improved targeting and care. J Gerontol Series A Biol Sci Med Sci. 2004;59(3):255–63.CrossRefGoogle Scholar
  6. 6.
    Rockwood K, Mitnitski A. Frailty in relation to the accumulation of deficits. J Gerontol Series A Biol Sci Med Sci. 2007;62(7):722–7.CrossRefGoogle Scholar
  7. 7.
    Rockwood K. Conceptual models of frailty: accumulation of deficits. Can J Cardiol. 2016;32(9):1046–50.PubMedCrossRefGoogle Scholar
  8. 8.
    Feng L, Nyunt MS, Feng L, Yap KB, Ng TP. Frailty predicts new and persistent depressive symptoms among community-dwelling older adults: findings from Singapore longitudinal aging study. J Am Med Dir Assoc. 2014;15(1):76.e7–e12.CrossRefGoogle Scholar
  9. 9.
    Makizako H, Shimada H. T, Yoshida D, Anan Y, Tsutsumimoto K, et al. physical frailty predicts incident depressive symptoms in elderly people: prospective findings from the Obu study of health promotion for the elderly. J Am Med Dir Assoc. 2015;16(3):194–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Armstrong JJ, Godin J, Launer LJ, White LR, Mitnitski A, Rockwood K, et al. Changes in frailty predict changes in cognition in older men: the Honolulu-Asia aging study. J Alzheimers Dis. 2016;53(3):1003–13.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Halil M, Cemal Kizilarslanoglu M, Emin Kuyumcu M, Yesil Y, Cruz Jentoft AJ. Cognitive aspects of frailty: mechanisms behind the link between frailty and cognitive impairment. J Nutr Health Aging. 2015;19(3):276–83.PubMedCrossRefGoogle Scholar
  12. 12.
    Barnett K, Mercer SW, Norbury M, Watt G, Wyke S, Guthrie B. Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. Lancet. 2012;380(9836):37–43.PubMedCrossRefGoogle Scholar
  13. 13.
    Aarts S, van den Akker M, Hajema KJ, van Ingen AM, Metsemakers JF, Verhey FR, et al. Multimorbidity and its relation to subjective memory complaints in a large general population of older adults. Int Psychogeriatr. 2011;23(4):616–24.PubMedCrossRefGoogle Scholar
  14. 14.
    Pedro MC, Mercedes MP, Ramon LH, Borja MR. Subjective memory complaints in elderly: relationship with health status, multimorbidity, medications, and use of services in a population-based study. Int Psychogeriatr. 2016;28(11):1903–16.PubMedCrossRefGoogle Scholar
  15. 15.
    Villarreal AE, Grajales S, Lopez L, Britton GB. Cognitive impairment, depression, and cooccurrence of both among the elderly in panama: differential associations with multimorbidity and functional limitations. Biomed Res Int. 2015;2015:718701. Scholar
  16. 16.
    Barnes PJ. Mechanisms of development of multimorbidity in the elderly. Eur Respir J. 2015;45(3):790–806.PubMedCrossRefGoogle Scholar
  17. 17.
    Sun N, Youle RJ, Finkel T. The mitochondrial basis of aging. Mol Cell. 2016;61(5):654–66.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Baptista G, Dupuy AM, Jaussent A, Durant R, Ventura E, Sauguet P, et al. Low-grade chronic inflammation and superoxide anion production by NADPH oxidase are the main determinants of physical frailty in older adults. Free Radic Res. 2012;46(9):1108–14.PubMedCrossRefGoogle Scholar
  19. 19.
    Brod SA. Unregulated inflammation shortens human functional longevity. Inflamm Res. 2000;49(11):561–70.PubMedCrossRefGoogle Scholar
  20. 20.
    Walston J, McBurnie MA, Newman A, Tracy RP, Kop WJ, Hirsch CH, et al. Frailty and activation of the inflammation and coagulation systems with and without clinical comorbidities: results from the cardiovascular health study. Arch Intern Med. 2002;162(20):2333–41.PubMedCrossRefGoogle Scholar
  21. 21.
    Collerton J, Martin-Ruiz C, Davies K, Hilkens CM, Isaacs J, Kolenda C, et al. Frailty and the role of inflammation, immunosenescence and cellular ageing in the very old: cross-sectional findings from the Newcastle 85+ study. Mech Ageing Dev. 2012;133(6):456–66.PubMedCrossRefGoogle Scholar
  22. 22.
    Boxer RS, Dauser DA, Walsh SJ, Hager WD, Kenny AM. The association between vitamin D and inflammation with the 6-minute walk and frailty in patients with heart failure. J Am Geriatr Soc. 2008;56(3):454–61.PubMedCrossRefGoogle Scholar
  23. 23.
    Brinkley TE, Leng X, Miller ME, Kitzman DW, Pahor M, Berry MJ, et al. Chronic inflammation is associated with low physical function in older adults across multiple comorbidities. J Gerontol Series A Biol Sci Med Sci. 2009;64(4):455–61.CrossRefGoogle Scholar
  24. 24.
    Penninx BW, Kritchevsky SB, Newman AB, Nicklas BJ, Simonsick EM, Rubin S, et al. Inflammatory markers and incident mobility limitation in the elderly. J Am Geriatr Soc. 2004;52(7):1105–13.PubMedCrossRefGoogle Scholar
  25. 25.
    Cesari M, Penninx BW, Pahor M, Lauretani F, Corsi AM, Rhys Williams G, et al. Inflammatory markers and physical performance in older persons: the InCHIANTI study. J Gerontol Series A Biol Sci Med Sci. 2004;59(3):242–8.CrossRefGoogle Scholar
  26. 26.
    Alexopoulos GS, Morimoto SS. The inflammation hypothesis in geriatric depression. Int J Geriatr Psychiatry. 2011;26(11):1109–18.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Penninx BW, Kritchevsky SB, Yaffe K, Newman AB, Simonsick EM, Rubin S, et al. Inflammatory markers and depressed mood in older persons: results from the health, aging and body composition study. Biol Psychiatry. 2003;54(5):566–72.PubMedCrossRefGoogle Scholar
  28. 28.
    Murphy RA, Hagaman AK, Reinders I, Steeves JA, Newman AB, Rubin SM, et al. Depressive trajectories and risk of disability and mortality in older adults: longitudinal findings from the health, aging, and body composition study. J Gerontol Series A Biol Sci Med Sci. 2016;71(2):228–35.CrossRefGoogle Scholar
  29. 29.
    Zhang J, Rane G, Dai X, Shanmugam MK, Arfuso F, Samy RP, et al. Ageing and the telomere connection: an intimate relationship with inflammation. Ageing Res Rev. 2016;25:55–69.PubMedCrossRefGoogle Scholar
  30. 30.
    Guzzardi MA, Iozzo P, Salonen M, Kajantie E, Eriksson JG. Rate of telomere shortening and metabolic and cardiovascular risk factors: a longitudinal study in the 1934–44 Helsinki birth cohort study. Ann Med. 2015;47(6):499–505.PubMedCrossRefGoogle Scholar
  31. 31.
    Darrow SM, Verhoeven JE, Revesz D, Lindqvist D, Penninx BW, Delucchi KL, et al. The association between psychiatric disorders and telomere length: a meta-analysis involving 14,827 persons. Psychosom Med. 2016;78(7):776–87.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Ridout KK, Ridout SJ, Price LH, Sen S, Tyrka AR. Depression and telomere length: a meta-analysis. J Affect Disord. 2016;191:237–47.PubMedCrossRefGoogle Scholar
  33. 33.
    Cai Z, Yan LJ, Ratka A. Telomere shortening and Alzheimer’s disease. NeuroMolecular Med. 2013;15(1):25–48.PubMedCrossRefGoogle Scholar
  34. 34.
    Lopez Gonzalez I, Garcia-Esparcia P, Llorens F, Ferrer I. Genetic and transcriptomic profiles of inflammation in neurodegenerative diseases: Alzheimer, Parkinson, Creutzfeldt-Jakob and tauopathies. Int J Mol Sci. 2016;17(2):206.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Galluzzi S, Beltramello A, Filippi M, Frisoni GB. Aging. Neurol Sci. 2008;29(Suppl 3):296–300.PubMedCrossRefGoogle Scholar
  36. 36.
    Bilello M, Doshi J, Nabavizadeh SA, Toledo JB, Erus G, Xie SX, et al. Correlating cognitive decline with white matter lesion and brain atrophy magnetic resonance imaging measurements in Alzheimer’s disease. J Alzheimers Dis. 2015;48(4):987–94.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Habes M, Erus G, Toledo JB, Zhang T, Bryan N, Launer LJ, et al. White matter hyperintensities and imaging patterns of brain ageing in the general population. Brain. 2016;139(Pt 4):1164–79.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Ramirez J, McNeely AA, Berezuk C, Gao F, Black SE. Dynamic progression of white matter hyperintensities in Alzheimer’s disease and normal aging: results from the Sunnybrook dementia study. Front Aging Neurosci. 2016;8:62.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Eylers VV, Maudsley AA, Bronzlik P, Dellani PR, Lanfermann H, Ding XQ. Detection of normal aging effects on human brain metabolite concentrations and microstructure with whole-brain MR spectroscopic imaging and quantitative MR imaging. Am J Neuroradiol. 2016;37(3):447–54.PubMedCrossRefGoogle Scholar
  40. 40.
    Harada CN, Natelson Love MC, Triebel KL. Normal cognitive aging. Clin Geriatr Med. 2013;29(4):737–52.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Bloch F, Thibaud M, Dugue B, Breque C, Rigaud AS, Kemoun G. Psychotropic drugs and falls in the elderly people: updated literature review and meta-analysis. J Aging Health. 2011;23(2):329–46.PubMedCrossRefGoogle Scholar
  42. 42.
    Iaboni A, Flint AJ. The complex interplay of depression and falls in older adults: a clinical review. Am J Geriatr Psychiatry. 2013;21(5):484–92.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Stevens JA, Corso PS, Finkelstein EA, Miller TR. The costs of fatal and non-fatal falls among older adults. Inj Prev. 2006;12(5):290–5.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Macaluso A, De Vito G. Muscle strength, power and adaptations to resistance training in older people. Eur J Appl Physiol. 2004;91(4):450–72.PubMedCrossRefGoogle Scholar
  45. 45.
    Paladini A, Fusco M, Coaccioli S, Skaper SD, Varrassi G. Chronic pain in the elderly: the case for new therapeutic strategies. Pain Physician. 2015;18(5):E863–76.PubMedGoogle Scholar
  46. 46.
    Abou-Raya S, Abou-Raya A, Helmii M. Duloxetine for the management of pain in older adults with knee osteoarthritis: randomised placebo-controlled trial. Age Ageing. 2012;41(5):646–52.PubMedCrossRefGoogle Scholar
  47. 47.
    Lavand’homme P, Thienpont E. Pain after total knee arthroplasty: a narrative review focusing on the stratification of patients at risk for persistent pain. Bone Joint J. 2015;97-B(10 Suppl A):45–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Moulin D, Boulanger A, Clark AJ, Clarke H, Dao T, Finley GA, et al. Pharmacological management of chronic neuropathic pain: revised consensus statement from the Canadian Pain Society. Pain Res Manag. 2014;19(6):328–35.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Fife TD, Blum D, Fisher RS. Measuring the effects of antiepileptic medications on balance in older people. Epilepsy Res. 2006;70(2–3):103–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Chiao YA, Rabinovitch PS. The aging heart. Cold Spring Harb Perspect Med. 2015;5(9):a025148. Scholar
  51. 51.
    Morin DP, Bernard ML, Madias C, Rogers PA, Thihalolipavan S, Estes NA 3rd. The state of the art: atrial fibrillation epidemiology, prevention, and treatment. Mayo Clin Proc. 2016;91(12):1778–810.PubMedCrossRefGoogle Scholar
  52. 52.
    Chen LY, Agarwal SK, Norby FL, Gottesman RF, Loehr LR, Soliman EZ, et al. Persistent but not paroxysmal atrial fibrillation is independently associated with lower cognitive function: ARIC study. J Am Coll Cardiol. 2016;67(11):1379–80.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Coma M, Gonzalez-Moneo MJ, Enjuanes C, Velazquez PP, Espargaro DB, Perez BA, et al. Effect of permanent atrial fibrillation on cognitive function in patients with chronic heart failure. Am J Cardiol. 2016;117(2):233–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Moffitt P, Lane DA, Park H, O’Connell J, Quinn TJ. Thromboprophylaxis in atrial fibrillation and association with cognitive decline: systematic review. Age Ageing. 2016;45(6):767–75.PubMedCrossRefGoogle Scholar
  55. 55.
    O’Callaghan S, Kenny RA. Neurocardiovascular instability and cognition. Yale J Biol Med. 2016;89(1):59–71.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Gill SS, Anderson GM, Fischer HD, Bell CM, Li P, Normand SL, et al. Syncope and its consequences in patients with dementia receiving cholinesterase inhibitors: a population-based cohort study. Arch Intern Med. 2009;169(9):867–73.PubMedCrossRefGoogle Scholar
  57. 57.
    Gupta V, Lipsitz LA. Orthostatic hypotension in the elderly: diagnosis and treatment. Am J Med. 2007;120(10):841–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Vloet LC, Pel-Little RE, Jansen PA, Jansen RW. High prevalence of postprandial and orthostatic hypotension among geriatric patients admitted to Dutch hospitals. J Gerontol Series A Biol Sci Med Sci. 2005;60(10):1271–7.CrossRefGoogle Scholar
  59. 59.
    Gugger JJ. Antipsychotic pharmacotherapy and orthostatic hypotension: identification and management. CNS Drugs. 2011;25(8):659–71.PubMedCrossRefGoogle Scholar
  60. 60.
    Jana AK, Praharaj SK, Roy N. Olanzapine-induced orthostatic hypotension. Clin Psychopharmacol Neurosci. 2015;13(1):113–4.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Torgovnick J, Sethi NK, Arsura E. Aripiprazole-induced orthostatic hypotension and cardiac arrhythmia. Psychiatry Clin Neurosci. 2008;62(4):485.PubMedCrossRefGoogle Scholar
  62. 62.
    Poon IO, Braun U. High prevalence of orthostatic hypotension and its correlation with potentially causative medications among elderly veterans. J Clin Pharm Ther. 2005;30(2):173–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Jones J, Srodulski ZM, Romisher S. The aging electrocardiogram. Am J Emerg Med. 1990;8(3):240–5.PubMedCrossRefGoogle Scholar
  64. 64.
    Ilkhanoff L, Liu K, Ning H, Nazarian S, Bluemke DA, Soliman EZ, et al. Association of QRS duration with left ventricular structure and function and risk of heart failure in middle-aged and older adults: the multi-ethnic study of atherosclerosis (MESA). Eur J Jeart Fail. 2012;14(11):1285–92.CrossRefGoogle Scholar
  65. 65.
    Bruccoleri RE, Burns MMA. Literature review of the use of sodium bicarbonate for the treatment of QRS widening. J Med Toxicol. 2016;12(1):121–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Rabkin SW, Cheng XJ, Thompson DJ. Detailed analysis of the impact of age on the QT interval. J Geriatr Cardiol. 2016;13(9):740–8.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Meiners S, Eickelberg O, Konigshoff M. Hallmarks of the ageing lung. Eur Respir J. 2015;45(3):807–27.PubMedCrossRefGoogle Scholar
  68. 68.
    Thannickal VJ, Murthy M, Balch WE, Chandel NS, Meiners S, Eickelberg O, et al. Blue journal conference. Aging and susceptibility to lung disease. Am J Respir Crit Care Med. 2015;191(3):261–9.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Tunbridge WM. The epidemiology of hypothyroidism. Clin Endocrinol Metab. 1979;8(1):21–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Pasqualetti G, Pagano G, Rengo G, Ferrara N, Monzani F. Subclinical hypothyroidism and cognitive impairment: systematic review and meta-analysis. J Clin Endocrinol Metab. 2015;100(11):4240–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Bono G, Fancellu R, Blandini F, Santoro G, Mauri M. Cognitive and affective status in mild hypothyroidism and interactions with L-thyroxine treatment. Acta Neurol Scand. 2004;110(1):59–66.PubMedCrossRefGoogle Scholar
  72. 72.
    Almeida OP, Alfonso H, Flicker L, Hankey G, Chubb SA, Yeap BB. Thyroid hormones and depression: the health in men study. Am J Geriatr Psychiatry. 2011;19(9):763–70.PubMedCrossRefGoogle Scholar
  73. 73.
    de Jongh RT, Lips P, van Schoor NM, Rijs KJ, Deeg DJ, Comijs HC, et al. Endogenous subclinical thyroid disorders, physical and cognitive function, depression, and mortality in older individuals. Eur J Endocrinol. 2011;165(4):545–54.PubMedCrossRefGoogle Scholar
  74. 74.
    Grossman A, Weiss A, Koren-Morag N, Shimon I, Beloosesky Y, Meyerovitch J. Subclinical thyroid disease and mortality in the elderly: a retrospective cohort study. Am J Med. 2016;129(4):423–30.PubMedCrossRefGoogle Scholar
  75. 75.
    Henderson VW. Action of estrogens in the aging brain: dementia and cognitive aging. Biochim Biophys Acta. 2010;1800(10):1077–83.PubMedCrossRefGoogle Scholar
  76. 76.
    Shumaker SA, Legault C, Rapp SR, Thal L, Wallace RB, Ockene JK, et al. Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal women: the Women’s health initiative memory study: a randomized controlled trial. JAMA. 2003;289(20):2651–62.PubMedCrossRefGoogle Scholar
  77. 77.
    Shumaker SA, Legault C, Kuller L, Rapp SR, Thal L, Lane DS, et al. Conjugated equine estrogens and incidence of probable dementia and mild cognitive impairment in postmenopausal women: Women’s health initiative memory study. JAMA. 2004;291(24):2947–58.PubMedCrossRefGoogle Scholar
  78. 78.
    Canonico M. Hormone therapy and hemostasis among postmenopausal women: a review. Menopause. 2014;21(7):753–62.PubMedCrossRefGoogle Scholar
  79. 79.
    Harman SM, Metter EJ, Tobin JD, Pearson J, Blackman MR. Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore longitudinal study of aging. J Clin Endocrinol Metab. 2001;86(2):724–31.PubMedCrossRefGoogle Scholar
  80. 80.
    Hsu B, Cumming RG, Waite LM, Blyth FM, Naganathan V, Le Couteur DG, et al. Longitudinal relationships between reproductive hormones and cognitive decline in older men: the concord health and ageing in men project. J Clin Endocrinol Metab. 2015;100(6):2223–30.PubMedCrossRefGoogle Scholar
  81. 81.
    Moffat SD, Zonderman AB, Metter EJ, Kawas C, Blackman MR, Harman SM, et al. Free testosterone and risk for Alzheimer disease in older men. Neurology. 2004;62(2):188–93.PubMedCrossRefGoogle Scholar
  82. 82.
    Yeap BB. Hormonal changes and their impact on cognition and mental health of ageing men. Maturitas. 2014;79(2):227–35.PubMedCrossRefGoogle Scholar
  83. 83.
    Resnick SM, Matsumoto AM, Stephens-Shields AJ, Ellenberg SS, Gill TM, Shumaker SA, et al. Testosterone treatment and cognitive function in older men with low testosterone and age-associated memory impairment. JAMA. 2017;317(7):717–27.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Shores MM, Sloan KL, Matsumoto AM, Moceri VM, Felker B, Kivlahan DR. Increased incidence of diagnosed depressive illness in hypogonadal older men. Arch Gen Psychiatry. 2004;61(2):162–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Shores MM, Kivlahan DR, Sadak TI, Li EJ, Matsumoto AM. A randomized, double-blind, placebo-controlled study of testosterone treatment in hypogonadal older men with subthreshold depression dysthymia or minor depression. J Clin Psychiatry. 2009;70(7):1009–16.PubMedCrossRefGoogle Scholar
  86. 86.
    Bain J. Testosterone and the aging male: to treat or not to treat? Maturitas. 2010;66(1):16–22.PubMedCrossRefGoogle Scholar
  87. 87.
    Morgentaler A, Miner MM, Caliber M, Guay AT, Khera M, Traish AM. Testosterone therapy and cardiovascular risk: advances and controversies. Mayo Clin Proc. 2015;90(2):224–51.PubMedCrossRefGoogle Scholar
  88. 88.
    Shores MM, Arnold AM, Biggs ML, Longstreth WT Jr, Smith NL, Kizer JR, et al. Testosterone and dihydrotestosterone and incident ischaemic stroke in men in the cardiovascular health study. Clin Endocrinol. 2014;81(5):746–53.CrossRefGoogle Scholar
  89. 89.
    Budoff MJ, Ellenberg SS, Lewis CE, Mohler ER 3rd, Wenger NK, Bhasin S, et al. Testosterone treatment and coronary artery plaque volume in older men with low testosterone. JAMA. 2017;317(7):708–16.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Cheetham TC, An J, Jacobsen SJ, Niu F, Sidney S, Quesenberry CP, et al. Association of testosterone replacement with cardiovascular outcomes among men with androgen deficiency. JAMA Intern Med. 2017;177(4):491–9.Google Scholar
  91. 91.
    Kim IH, Kisseleva T, Brenner DA. Aging and liver disease. Curr Opin Gastroenterol. 2015;31(3):184–91.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Tan JL, Eastment JG, Poudel A, Hubbard RE. Age-related changes in hepatic function: an update on implications for drug therapy. Drugs Aging. 2015;32(12):999–1008.PubMedCrossRefGoogle Scholar
  93. 93.
    Nitta K, Okada K, Yanai M, Takahashi S. Aging and chronic kidney disease. Kidney Blood Press Res. 2013;38(1):109–20.PubMedCrossRefGoogle Scholar
  94. 94.
    Hirsch CH, Maharaj S, Bourgeois JA. The chief adverse effects of medications. In: Hategan A, Bourgeois JA, Hirsch CH, editors. On-call geriatric psychiatry: handbook of principles and practice. Chem: Springer; 2016. p. 161–83.CrossRefGoogle Scholar
  95. 95.
    Hojs R, Bevc S, Ekart R, Gorenjak M, Puklavec L. Kidney function estimating equations in patients with chronic kidney disease. Int J Clin Pract. 2011;65(4):458–64.PubMedCrossRefGoogle Scholar
  96. 96.
    Ali S, Garcia JM. Sarcopenia, cachexia and aging: diagnosis, mechanisms and therapeutic options—a mini-review. Gerontology. 2014;60(4):294–305.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Ni Mhaolain AM, Fan CW, Romero-Ortuno R, Cogan L, Cunningham C, Kenny RA, et al. Frailty, depression, and anxiety in later life. Int Psychogeriatr. 2012;24(8):1265–74.PubMedCrossRefGoogle Scholar
  98. 98.
    Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol Series A Biol Sci Med Sci. 2001;56(3):M146–56.CrossRefGoogle Scholar
  99. 99.
    Davis DH, Muniz Terrera G, Keage H, Rahkonen T, Oinas M, Matthews FE, et al. Delirium is a strong risk factor for dementia in the oldest-old: a population-based cohort study. Brain. 2012;135(Pt 9):2809–16.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of General MedicineUniversity of California Davis Medical CenterSacramentoUSA
  2. 2.Department of Psychiatry and Behavioural NeurosciencesMcMaster UniversityHamiltonCanada

Personalised recommendations