Advertisement

Classification of Confocal Endomicroscopy Patterns for Diagnosis of Lung Cancer

  • Debora Gil
  • Oriol Ramos-Terrades
  • Elisa Minchole
  • Carles SanchezEmail author
  • Noelia Cubero de Frutos
  • Marta Diez-Ferrer
  • Rosa Maria Ortiz
  • Antoni Rosell
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10550)

Abstract

Confocal Laser Endomicroscopy (CLE) is an emerging imaging technique that allows the in-vivo acquisition of cell patterns of potentially malignant lesions. Such patterns could discriminate between inflammatory and neoplastic lesions and, thus, serve as a first in-vivo biopsy to discard cases that do not actually require a cell biopsy.

The goal of this work is to explore whether CLE images obtained during videobronchoscopy contain enough visual information to discriminate between benign and malign peripheral lesions for lung cancer diagnosis. To do so, we have performed a pilot comparative study with 12 patients (6 adenocarcinoma and 6 benign-inflammatory) using 2 different methods for CLE pattern analysis: visual analysis by 3 experts and a novel methodology that uses graph methods to find patterns in pre-trained feature spaces. Our preliminary results indicate that although visual analysis can only achieve a 60.2% of accuracy, the accuracy of the proposed unsupervised image pattern classification raises to 84.6%.

We conclude that CLE images visual information allow in-vivo detection of neoplastic lesions and graph structural analysis applied to deep-learning feature spaces can achieve competitive results.

Notes

Acknowledgments

Work supported by projects DPI2015-65286-R, FIS-ETES PI09/90917, 2014-SGR-1470 and Fundació Marató TV3 20133510. Also supported by CERCA Programme/Generalitat de Catalunya. The Titan X Pascal used for this research was donated by the NVIDIA Corporation. Finally, Debora Gil is supported by the Serra Hunter Program.

References

  1. 1.
    Jabbour, J.M., Saldua, M.A., Bixler, J.N., Maitland, K.C.: Confocal endomicroscopy: instrumentation and medical applications. Ann. Biomed. Eng. 40(2), 378–397 (2012)CrossRefGoogle Scholar
  2. 2.
    André, B., Vercauteren, T., Buchner, A.M., et al.: Software for automated classification of probe-based confocal laser endomicroscopy videos of colorectal polyps. World J. Gastroenterol. 18(39), 5560–5569 (2012)CrossRefGoogle Scholar
  3. 3.
    Sanduleanu, S., Driessen, A., Gomez-Garcia, E., Hameeteman, W., de Brune, A., Masclee, A.: In vivo diagnosis and classification of colorectal neoplasia by chromoendoscopy guided confocal laser endomicroscopy. Clin. Gastroenterol. Hepatol. 8, 371–378 (2010)CrossRefGoogle Scholar
  4. 4.
    Thiberville, L., Salaun, M., Lachkar, S., Dominique, S., Moreno-Swirc, S., Vever-Bizet, C., Bourg-Heckly, G.: Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy. Eur. Respir. J. 33, 974–985 (2009)CrossRefGoogle Scholar
  5. 5.
    Fuchs, F., Zirlik, S., Hildner, K.: Fluorescein-aided confocal laser endomicroscopy of the lung. Respiration 81, 32–38 (2010)CrossRefGoogle Scholar
  6. 6.
    Fuchs, F., Zirlik, S., Hildner, K., Schubert, J., Vieth, M., Neurath, M.: Confocal laser endomicroscopy for diagnosing lung cancer in vivo. Eur. Respir. J. 41, 1401–1408 (2013)CrossRefGoogle Scholar
  7. 7.
    Hassan, T., Piton, N., Lachkar, S., Salan, M., Thiberville, L.: A novel method for in vivo imaging of solitary lung nodules using navigational bronchoscopy and confocal laser microendoscopy. Lung 193(5), 773–778 (2015)CrossRefGoogle Scholar
  8. 8.
    Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2(2), 121–167 (1998)CrossRefGoogle Scholar
  9. 9.
    Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009)CrossRefzbMATHGoogle Scholar
  10. 10.
    Greenberg, M.J., Harper, J.R.: Algebraic Topology: A First Course. Addison-Wesley, Redwood City (1981)zbMATHGoogle Scholar
  11. 11.
    Luo, Q., Zhang, S., Huang, T., Gao, W., Tian, Q.: Superimage: packing semantic-relevant images for indexing and retrieval. In: ICMR (2014)Google Scholar
  12. 12.
    Cazabet, R., Amblard, F., Hanachi, C.: Detection of overlapping communities in dynamical social networks. In: ICSC, pp. 309–314 (2010)Google Scholar
  13. 13.
    Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. In: BMVC (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Debora Gil
    • 1
  • Oriol Ramos-Terrades
    • 1
  • Elisa Minchole
    • 2
  • Carles Sanchez
    • 1
    Email author
  • Noelia Cubero de Frutos
    • 2
  • Marta Diez-Ferrer
    • 2
  • Rosa Maria Ortiz
    • 2
  • Antoni Rosell
    • 2
  1. 1.Computer Science Department, Computer Vision CenterUniversitat Autonoma de BarcelonaBarcelonaSpain
  2. 2.Hospital de BellvitgeBarcelonaSpain

Personalised recommendations