Probabilistic Black-Box Reachability Checking

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10548)


Model checking has a long-standing tradition in software verification. Given a system design it checks whether desired properties are satisfied. Unlike testing, it cannot be applied in a black-box setting. To overcome this limitation Peled et al.  introduced black-box checking, a combination of testing, model inference and model checking. The technique requires systems to be fully deterministic. For stochastic systems, statistical techniques are available. However, they cannot be applied to systems with non-deterministic choices. We present a black-box checking technique for stochastic systems that allows both, non-deterministic and probabilistic behaviour. It involves model inference, testing and probabilistic model-checking. Here, we consider reachability checking, i.e., we infer near-optimal input-selection strategies for bounded reachability.


Model inference Statistical model-checking Reachability analysis Black-box checking Testing Verification 



This work was supported by the TU Graz LEAD project “Dependable Internet of Things in Adverse Environments”. The authors would like to thank the LEAD project members Roderick Bloem, Masoud Ebrahimi, Franz Pernkopf, Franz Röck, and Tobias Schrank for fruitful discussions.


  1. 1.
    Aichernig, B.K., Tappler, M.: Learning from faults: mutation testing in active automata learning. In: Barrett, C., Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 19–34. Springer, Cham (2017). doi: 10.1007/978-3-319-57288-8_2 CrossRefGoogle Scholar
  2. 2.
    Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987). doi: 10.1016/0890-5401(87)90052-6 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Banks, A., Gupta, R. (eds.): MQTT Version 3.1.1. OASIS Standard, October 2014., latest version.
  4. 4.
    Brázdil, T., Chatterjee, K., Chmelik, M., Forejt, V., Kretínský, J., Kwiatkowska, M.Z., Parker, D., Ujma, M.: Verification of Markov decision processes using learning algorithms. In: Cassez and Raskin [6], pp. 98–114.
  5. 5.
    Carrasco, R.C., Oncina, J.: Learning stochastic regular grammars by means of a state merging method. In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994. LNCS, vol. 862, pp. 139–152. Springer, Heidelberg (1994). doi: 10.1007/3-540-58473-0_144 CrossRefGoogle Scholar
  6. 6.
    Cassez, F., Raskin, J.-F. (eds.): ATVA 2014. LNCS, vol. 8837. Springer, Cham (2014)zbMATHGoogle Scholar
  7. 7.
    Chen, Y., Nielsen, T.D.: Active learning of Markov decision processes for system verification. In: 11th International Conference on Machine Learning and Applications, ICMLA, Boca Raton, FL, USA, December 12–15, 2012, vol. 2, pp. 289–294. IEEE (2012).
  8. 8.
    D’Argenio, P., Legay, A., Sedwards, S., Traonouez, L.: Smart sampling for lightweight verification of Markov decision processes. STTT 17(4), 469–484 (2015). doi: 10.1007/s10009-015-0383-0 CrossRefGoogle Scholar
  9. 9.
    David, A., Jensen, P.G., Larsen, K.G., Legay, A., Lime, D., Sørensen, M.G., Taankvist, J.H.: On time with minimal expected cost!. In: Cassez and Raskin [6], pp. 129–145.
  10. 10.
    David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Uppaal Stratego. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 206–211. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46681-0_16 Google Scholar
  11. 11.
    Elkind, E., Genest, B., Peled, D., Qu, H.: Grey-box checking. In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 420–435. Springer, Heidelberg (2006). doi: 10.1007/11888116_30 CrossRefGoogle Scholar
  12. 12.
    EMQ. Accessed 07 May 2017
  13. 13.
    Fiterău-Broştean, P., Janssen, R., Vaandrager, F.: Combining model learning and model checking to analyze TCP implementations. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 454–471. Springer, Cham (2016). doi: 10.1007/978-3-319-41540-6_25 Google Scholar
  14. 14.
    Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification techniques for probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21455-4_3 CrossRefGoogle Scholar
  15. 15.
    Groce, A., Peled, D., Yannakakis, M.: Adaptive model checking. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 357–370. Springer, Heidelberg (2002). doi: 10.1007/3-540-46002-0_25 CrossRefGoogle Scholar
  16. 16.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22110-1_47 CrossRefGoogle Scholar
  17. 17.
    Kwiatkowska, M., Parker, D.: Automated verification and strategy synthesis for probabilistic systems. In: Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 5–22. Springer, Cham (2013). doi: 10.1007/978-3-319-02444-8_2 CrossRefGoogle Scholar
  18. 18.
    Larsen, K.G., Legay, A.: Statistical model checking: past, present, and future. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 3–15. Springer, Cham (2016). doi: 10.1007/978-3-319-47166-2_1 CrossRefGoogle Scholar
  19. 19.
    Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview. In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu, G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-16612-9_11 CrossRefGoogle Scholar
  20. 20.
    Legay, A., Sedwards, S., Traonouez, L.-M.: Scalable verification of Markov decision processes. In: Canal, C., Idani, A. (eds.) SEFM 2014. LNCS, vol. 8938, pp. 350–362. Springer, Cham (2015). doi: 10.1007/978-3-319-15201-1_23 Google Scholar
  21. 21.
    Mao, H., Chen, Y., Jaeger, M., Nielsen, T.D., Larsen, K.G., Nielsen, B.: Learning probabilistic automata for model checking. In: Eighth International Conference on Quantitative Evaluation of Systems, QEST 2011, Aachen, Germany, 5–8, pp. 111–120. IEEE Computer Society (2011).
  22. 22.
    Mao, H., Chen, Y., Jaeger, M., Nielsen, T.D., Larsen, K.G., Nielsen, B.: Learning Markov decision processes for model checking. In: Fahrenberg, U., Legay, A., Thrane, C.R. (eds.) Proceedings Quantities in Formal Methods, QFM 2012, Paris, France, 28. EPTCS, vol. 103, pp. 49–63 (2012).
  23. 23.
    Mao, H., Chen, Y., Jaeger, M., Nielsen, T.D., Larsen, K.G., Nielsen, B.: Learning deterministic probabilistic automata from a model checking perspective. Mach. Learn. 105(2), 255–299 (2016). doi: 10.1007/s10994-016-5565-9 MathSciNetCrossRefGoogle Scholar
  24. 24.
    Nachmanson, L., Veanes, M., Schulte, W., Tillmann, N., Grieskamp, W.: Optimal strategies for testing nondeterministic systems. In: Avrunin, G.S., Rothermel, G. (eds.) Proceedings of the ACM/SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2004, Boston, Massachusetts, USA, July 11–14, 2004, pp. 55–64. ACM (2004).
  25. 25.
    Nouri, A., Raman, B., Bozga, M., Legay, A., Bensalem, S.: Faster statistical model checking by means of abstraction and learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 340–355. Springer, Cham (2014). doi: 10.1007/978-3-319-11164-3_28 Google Scholar
  26. 26.
    Okamoto, M.: Some inequalities relating to the partial sum of binomial probabilities. Ann. Inst. Stat. Math. 10(1), 29–35 (1959). doi: 10.1007/BF02883985 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. In: Wu, J., Chanson, S.T., Gao, Q. (eds.) Formal Methods for Protocol Engineering and Distributed Systems. IAICT, vol. 28, pp. 225–240. Springer, Boston, MA (1999). doi: 10.1007/978-0-387-35578-8_13 CrossRefGoogle Scholar
  28. 28.
    prob-black-reach - Java implementation of probabilistic black-box reachability checking. Accessed 07 May 2017
  29. 29.
    Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box probabilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 202–215. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-27813-9_16 CrossRefGoogle Scholar
  30. 30.
    Shu, G., Lee, D.: Testing security properties of protocol implementations - a machine learning based approach. In: 27th IEEE International Conference on Distributed Computing Systems (ICDCS 2007), June 25–29, 2007, Toronto, Ontario, Canada, p. 25. IEEE Computer Society (2007).
  31. 31.
    Tappler, M., Aichernig, B.K., Bloem, R.: Model-based testing IoT communication via active automata learning. In: ICST 2017, pp. 276–287. IEEE Computer Society (2017)Google Scholar
  32. 32.
  33. 33.
    Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing approaches. Softw. Test., Verif. Reliab. 22(5), 297–312 (2012). doi: 10.1002/stvr.456 CrossRefGoogle Scholar
  34. 34.
    Verwer, S., Weerdt, M., Witteveen, C.: A likelihood-ratio test for identifying probabilistic deterministic real-time automata from positive data. In: Sempere, J.M., García, P. (eds.) ICGI 2010. LNCS (LNAI), vol. 6339, pp. 203–216. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15488-1_17 CrossRefGoogle Scholar
  35. 35.
    Wang, J., Sun, J., Qin, S.: Verifying complex systems probabilistically through learning, abstraction and refinement. CoRR abs/1610.06371 (2016).
  36. 36.
    Younes, H.L.S.: Probabilistic verification for “Black-Box” systems. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 253–265. Springer, Heidelberg (2005). doi: 10.1007/11513988_25 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Software TechnologyGraz University of TechnologyGrazAustria

Personalised recommendations