TeLEx: Passive STL Learning Using Only Positive Examples

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10548)


We propose a novel passive learning approach, TeLEx, to infer signal temporal logic formulas that characterize the behavior of a dynamical system using only observed signal traces of the system. The approach requires two inputs: a set of observed traces and a template Signal Temporal Logic (STL) formula. The unknown parameters in the template can include time-bounds of the temporal operators, as well as the thresholds in the inequality predicates. TeLEx finds the value of the unknown parameters such that the synthesized STL property is satisfied by all the provided traces and it is tight. This requirement of tightness is essential to generating interesting properties when only positive examples are provided and there is no option to actively query the dynamical system to discover the boundaries of legal behavior. We propose a novel quantitative semantics for satisfaction of STL properties which enables TeLEx to learn tight STL properties without multidimensional optimization. The proposed new metric is also smooth. This is critical to enable use of gradient-based numerical optimization engines and it produces a 30\(\times \)–100\(\times \) speed-up with respect to the state-of-art gradient-free optimization. The approach is implemented in a publicly available tool.



This work is supported in part by DARPA under contract FA8750-16-C-0043 and NSF grant CNS-1423298.


  1. 1.
    Abbas, H., Hoxha, B., Fainekos, G., Ueda, K.: Robustness-guided temporal logic testing and verification for stochastic cyber-physical systems. In: 2014 IEEE 4th Annual International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), pp. 1–6. IEEE (2014)Google Scholar
  2. 2.
    Abbas, H., Winn, A., Fainekos, G., Julius, A.A.: Functional gradient descent method for metric temporal logic specifications. In: 2014 American Control Conference (ACC), pp. 2312–2317. IEEE (2014)Google Scholar
  3. 3.
    Akazaki, T.: Falsification of conditional safety properties for cyber-physical systems with Gaussian process regression. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp. 439–446. Springer, Cham (2016). doi: 10.1007/978-3-319-46982-9_27 CrossRefGoogle Scholar
  4. 4.
    Aksaray, D., Jones, A., Kong, Z., Schwager, M., Belta, C.: Q-learning for robust satisfaction of signal temporal logic specifications. In: 2016 IEEE 55th Conference on Decision and Control (CDC), pp. 6565–6570. IEEE (2016)Google Scholar
  5. 5.
    Angluin, D.: Identifying languages from stochastic examples. Technical report, YALEU/DCS/RR-614, Yale University, Department of Computer Science (1988)Google Scholar
  6. 6.
    Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-19835-9_21 CrossRefGoogle Scholar
  7. 7.
    Bartocci, E., Bortolussi, L., Sanguinetti, G.: Data-Driven Statistical Learning of Temporal Logic Properties. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 23–37. Springer, Cham (2014). doi: 10.1007/978-3-319-10512-3_3 Google Scholar
  8. 8.
    Deshmukh, J.V., Majumdar, R., Prabhu, V.S.: Quantifying conformance using the Skorokhod metric. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 234–250. Springer, Cham (2015). doi: 10.1007/978-3-319-21668-3_14 CrossRefGoogle Scholar
  9. 9.
    Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 167–170. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14295-6_17 CrossRefGoogle Scholar
  10. 10.
    Donzé, A.: On signal temporal logic. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 382–383. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40787-1_27 CrossRefGoogle Scholar
  11. 11.
    Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 92–106. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15297-9_9 CrossRefGoogle Scholar
  12. 12.
    Facchinei, F., Lucidi, S., Palagi, L.: A truncated newton algorithm for large scale box constrained optimization. SIAM J. Optim. 12(4), 1100–1125 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications. In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES/RV -2006. LNCS, vol. 4262, pp. 178–192. Springer, Heidelberg (2006). doi: 10.1007/11940197_12 CrossRefGoogle Scholar
  14. 14.
    Fu, J., Topcu, U.: Synthesis of joint control and active sensing strategies under temporal logic constraints. IEEE Trans. Autom. Control 61(11), 3464–3476 (2016). doi: 10.1109/TAC.2016.2518639 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Giuseppe, B., Cristian Ioan, V., Francisco, P.A., Hirotoshi, Y., Calin, B.: A decision tree approach to data classification using signal temporal logic. In: Hybrid Systems: Computation and Control (HSCC), Vienna, Austria, pp. 1–10, April 2016Google Scholar
  16. 16.
    Gold, E.M.: Language identification in the limit. Inf. Control 10(5), 447–474 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Horning, J.J.: A study of grammatical inference. Technical report, DTIC Document (1969)Google Scholar
  18. 18.
    Hoxha, B., Dokhanchi, A., Fainekos, G.: Mining parametric temporal logic properties in model based design for cyber-physical systems. arXiv preprint arXiv:1512.07956 (2015)
  19. 19.
    Jakšić, S., Bartocci, E., Grosu, R., Ničković, D.: Quantitative monitoring of STL with edit distance. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp. 201–218. Springer, Cham (2016). doi: 10.1007/978-3-319-46982-9_13 CrossRefGoogle Scholar
  20. 20.
    Jha, S., Raman, V.: Automated synthesis of safe autonomous vehicle control under perception uncertainty. In: Rayadurgam, S., Tkachuk, O. (eds.) NFM 2016. LNCS, vol. 9690, pp. 117–132. Springer, Cham (2016). doi: 10.1007/978-3-319-40648-0_10 CrossRefGoogle Scholar
  21. 21.
    Jha, S., Raman, V.: On optimal control of stochastic linear hybrid systems. In: Fränzle, M., Markey, N. (eds.) FORMATS 2016. LNCS, vol. 9884, pp. 69–84. Springer, Cham (2016). doi: 10.1007/978-3-319-44878-7_5 CrossRefGoogle Scholar
  22. 22.
    Jha, S., Seshia, S.A.: A theory of formal synthesis via inductive learning. Acta Inform. (2017). doi: 10.1007/s00236-017-0294-5
  23. 23.
    Jin, X., Donzé, A., Deshmukh, J.V., Seshia, S.A.: Mining requirements from closed-loop control models. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(11), 1704–1717 (2015)CrossRefzbMATHGoogle Scholar
  24. 24.
    Kong, Z., Jones, A., Medina Ayala, A., Aydin Gol, E., Belta, C.: Temporal logic inference for classification and prediction from data. In: Proceedings of the 17th International Conference on Hybrid Systems: Computation and Control, pp. 273–282. ACM (2014)Google Scholar
  25. 25.
    Lindemann, L., Dimarogonas, D.V.: Robust control for signal temporal logic specifications using average space robustness. arXiv preprint arXiv:1607.07019 (2016)
  26. 26.
    Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-30206-3_12 CrossRefGoogle Scholar
  27. 27.
    Maler, O., Nickovic, D., Pnueli, A.: Checking temporal properties of discrete, timed and continuous behaviors. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science. LNCS, vol. 4800, pp. 475–505. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-78127-1_26 CrossRefGoogle Scholar
  28. 28.
    Muggleton, S.: Learning from positive data. In: Muggleton, S. (ed.) ILP 1996. LNCS, vol. 1314, pp. 358–376. Springer, Heidelberg (1997). doi: 10.1007/3-540-63494-0_65 CrossRefGoogle Scholar
  29. 29.
    Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Springer Science & Business Media, New York (2006)zbMATHGoogle Scholar
  30. 30.
    Raman, V., Donzé, A., Maasoumy, M., Murray, R.M., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: Model predictive control with signal temporal logic specifications. In: CDC, pp. 81–87, December 2014Google Scholar
  31. 31.
    Sadraddini, S., Belta, C.: Robust temporal logic model predictive control. In: 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 772–779. IEEE (2015)Google Scholar
  32. 32.
    Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)CrossRefzbMATHGoogle Scholar
  33. 33.
    Yang, H., Hoxha, B., Fainekos, G.: Querying parametric temporal logic properties on embedded systems. In: Nielsen, B., Weise, C. (eds.) ICTSS 2012. LNCS, vol. 7641, pp. 136–151. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-34691-0_11 CrossRefGoogle Scholar
  34. 34.
    Zhu, C., Byrd, R.H., Lu, P., Nocedal, J.: Algorithm 778: fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw. (TOMS) 23(4), 550–560 (1997)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.CSLSRI InternationalMenlo ParkUSA
  2. 2.EECSUC BerkeleyBerkeleyUSA
  3. 3.United Technologies Research CenterEast HartfordUSA

Personalised recommendations