Combining Model Checking and Runtime Verification for Safe Robotics

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10548)

Abstract

A major challenge towards large scale deployment of autonomous mobile robots is to program them with formal guarantees and high assurance of correct operation. To this end, we present a framework for building safe robots. Our approach for validating the end-to-end correctness of robotics system consists of two parts: (1) a high-level programming language for implementing and systematically testing the reactive robotics software via model checking; (2) a signal temporal logic (STL) based online monitoring system to ensure that the assumptions about the low-level controllers (discrete models) used during model checking hold at runtime. Combining model checking with runtime verification helps us bridge the gap between software verification (discrete) that makes assumptions about the low-level controllers and the physical world, and the actual execution of the software on a real robotic platform in the physical world. To demonstrate the efficacy of our approach, we build a safe adaptive surveillance system and present software-in-the-loop simulations of the application.

References

  1. 1.
    Marino, A., Parker, L., Antonelli, G., Caccavale, F.: Behavioral control for multi-robot perimeter patrol: a finite state automata approach. In: International Conference on Robotics and Automation, ICRA, pp. 831–836. IEEE (2009)Google Scholar
  2. 2.
    Barrientos, A., Colorado, J., del Cerro, J., Martinez, A., Rossi, C., Sanz, D., Valente, J.: Aerial remote sensing in agriculture: a practical approach to area coverage and path planning for fleets of mini aerial robots. J. Field Robot. 28(5), 667–689 (2011)CrossRefGoogle Scholar
  3. 3.
    Kehoe, B., Patil, S., Abbeel, P., Goldberg, K.: A survey of research on cloud robotics and automation. IEEE Trans. Autom. Sci. Eng. 12(2), 398–409 (2015)CrossRefGoogle Scholar
  4. 4.
    Omachonu, V.K., Einspruch, N.G.: Innovation in healthcare delivery systems: a conceptual framework. Publ. Sect. Innov. J. 15(1), 1–20 (2010)Google Scholar
  5. 5.
    Yamaguchi, T., Kaga, T., Donzé, A., Seshia, S.A.: Combining requirement mining, software model checking, and simulation-based verification for industrial automotive systems. In: Proceedings of the IEEE International Conference on Formal Methods in Computer-Aided Design (FMCAD), October 2016Google Scholar
  6. 6.
    Desai, A., Gupta, V., Jackson, E., Qadeer, S., Rajamani, S., Zufferey, D.: P: safe asynchronous event-driven programming. In: Programming Language Design and Implementation (PLDI), pp. 321–332 (2013)Google Scholar
  7. 7.
    Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30206-3_12 CrossRefGoogle Scholar
  8. 8.
    Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: Intelligent Robots and Systems, IROS, vol. 3, pp. 2149–2154. IEEE (2004)Google Scholar
  9. 9.
    LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)CrossRefMATHGoogle Scholar
  10. 10.
    Mellinger, D., Kumar, V.: Minimum snap trajectory generation and control for quadrotors. In: International Conference on Robotics and Automation (ICRA), pp. 2520–2525 (2011)Google Scholar
  11. 11.
    Saha, I., Ramaithitima, R., Kumar, V., Pappas, G.J., Seshia, S.A.: Automated composition of motion primitives for multi-robot systems from safe ltl specifications. In: Intelligent Robots and Systems, IROS, pp. 1525–1532. IEEE (2014)Google Scholar
  12. 12.
    Desai, A., Saha, I., Yang, J., Qadeer, S., Seshia, S.A.: Drona: a framework for safe distributed mobile robotics. In: Proceedings of the 8th International Conference on Cyber-Physical Systems, ICCPS 2017, pp. 239–248. ACM, New York (2017)Google Scholar
  13. 13.
    Karaman, S., Frazzoli, E.: Incremental sampling-based algorithms for optimal motion planning. In: Robotics Science and Systems VI, vol. 104 (2010)Google Scholar
  14. 14.
    Godefroid, P.: Model checking for programming languages using verisoft. In: Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 174–186. ACM (1997)Google Scholar
  15. 15.
    Neter, J., Kutner, M.H., Nachtsheim, C.J., Wasserman, W.: Applied Linear Statistical Models, vol. 4. Irwin, Chicago (1996)Google Scholar
  16. 16.
    Maler, O., Ničković, D.: Monitoring properties of analog and mixed-signal circuits. Int. J. Softw. Tools Technol. Transf. 15(3), 247–268 (2013)CrossRefGoogle Scholar
  17. 17.
    Ho, H.-M., Ouaknine, J., Worrell, J.: Online monitoring of metric temporal logic. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 178–192. Springer, Cham (2014). doi:10.1007/978-3-319-11164-3_15 Google Scholar
  18. 18.
    Dokhanchi, A., Hoxha, B., Fainekos, G.: On-line monitoring for temporal logic robustness. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 231–246. Springer, Cham (2014). doi:10.1007/978-3-319-11164-3_19 Google Scholar
  19. 19.
    Deshmukh, J.V., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., Seshia, S.A.: Robust online monitoring of signal temporal logic. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 55–70. Springer, Cham (2015). doi:10.1007/978-3-319-23820-3_4 CrossRefGoogle Scholar
  20. 20.
    P Github (2017). https://github.com/p-org/P
  21. 21.
    Desai, A., Qadeer, S., Seshia, S.A.: Systematic testing of asynchronous reactive systems. In: Foundations of Software Engineering (FSE), pp. 73–83 (2015)Google Scholar
  22. 22.
    Şucan, I.A., Moll, M., Kavraki, L.E.: The open motion planning library. IEEE Robot. Autom. Mag. 19, 72–82 (2012). http://ompl.kavrakilab.org Google Scholar
  23. 23.
    Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 167–170. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14295-6_17 CrossRefGoogle Scholar
  24. 24.
    3D Robotics (2017). https://3dr.com/
  25. 25.
    PX4 Autopilot (2017). https://pixhawk.org/
  26. 26.
    Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods Syst. Des. 19(3), 291–314 (2001)CrossRefMATHGoogle Scholar
  27. 27.
    Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Temporal-logic-based reactive mission and motion planning. IEEE Trans. Robot. 25(6), 1370–1381 (2009)CrossRefGoogle Scholar
  28. 28.
    Saha, I., Ramaithitima, R., Kumar, V., Pappas, G.J., Seshia, S.A.: Implan: scalable incremental motion planning for multi-robot systems. In: International Conference on Cyber-Physical Systems (ICCPS), pp. 1–10. IEEE (2016)Google Scholar
  29. 29.
    Fainekos, G.E., Kress-Gazit, H., Pappas, G.J.: Temporal logic motion planning for mobile robots. In: International Conference on Robotics and Automation, ICRA, pp. 2020–2025. IEEE (2005)Google Scholar
  30. 30.
    Fainekos, G.E., Girard, A., Kress-Gazit, H., Pappas, G.J.: Temporal logic motion planning for dynamic robots. Automatica 45(2), 343–352 (2009)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Saha, I., Ramaithitima, R., Kumar, V., Pappas, G.J., Seshia, S.A.: Automated composition of motion primitives for multi-robot systems from safe ltl specifications. In: International Conference on Intelligent Robots and Systems (IROS), pp. 1525–1532. IEEE (2014)Google Scholar
  32. 32.
    Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1_30 CrossRefGoogle Scholar
  33. 33.
    Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 258–263. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8_18 CrossRefGoogle Scholar
  34. 34.
    Dreossi, T.: Sapo: reachability computation and parameter synthesis of polynomial dynamical systems. In: Hybrid Systems: Computation and Control, HSCC, HSCC 2017, pp. 29–34 (2017)Google Scholar
  35. 35.
    Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: a verification tool for stateflow models. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 68–82. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46681-0_5 Google Scholar
  36. 36.
    Dreossi, T., Dang, T., Donzé, A., Kapinski, J., Jin, X., Deshmukh, J.V.: Efficient guiding strategies for testing of temporal properties of hybrid systems. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 127–142. Springer, Cham (2015). doi:10.1007/978-3-319-17524-9_10 Google Scholar
  37. 37.
    Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19835-9_21 CrossRefGoogle Scholar
  38. 38.
    Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer, Heidelberg (2002). doi:10.1007/3-540-46002-0_24 CrossRefGoogle Scholar
  39. 39.
    Stoller, S.D., Bartocci, E., Seyster, J., Grosu, R., Havelund, K., Smolka, S.A., Zadok, E.: Runtime verification with state estimation. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 193–207. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29860-8_15 CrossRefGoogle Scholar
  40. 40.
    Bartocci, E., Grosu, R., Karmarkar, A., Smolka, S.A., Stoller, S.D., Zadok, E., Seyster, J.: Adaptive runtime verification. In: Qadeer, S., Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687, pp. 168–182. Springer, Heidelberg (2013). doi:10.1007/978-3-642-35632-2_18 CrossRefGoogle Scholar
  41. 41.
    Gat, E., Slack, M.G., Miller, D.P., Firby, R.J.: Path planning and execution monitoring for a planetary rover. In: Robotics and Automation, pp. 20–25. IEEE (1990)Google Scholar
  42. 42.
    Pettersson, O.: Execution monitoring in robotics: a survey. Robot. Auton. Syst. 53(2), 73–88 (2005)CrossRefGoogle Scholar
  43. 43.
    Lotz, A., Steck, A., Schlegel, C.: Runtime monitoring of robotics software components: increasing robustness of service robotic systems. In: 2011 15th International Conference on Advanced Robotics (ICAR), pp. 285–290. IEEE (2011)Google Scholar
  44. 44.
    Lee, I., Ben-Abdallah, H., Kannan, S., Kim, M., Sokolsky, O., Viswanathan, M.: A monitoring and checking framework for run-time correctness assurance (1998)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ankush Desai
    • 1
  • Tommaso Dreossi
    • 1
  • Sanjit A. Seshia
    • 1
  1. 1.University of California at BerkeleyBerkeleyUSA

Personalised recommendations