Skip to main content

Vision-Based Change Detection Using Comparative Morphology

  • Chapter
  • First Online:

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 135))

Abstract

The chapter addresses the theoretical and practical aspects of the scene change detection problem with the use of computer vision techniques. It means detecting new or disappeared objects in images registered at different moments of time and possibly in various lighting, weather, and season conditions. In this chapter, we propose the new scheme of Comparative Morphology (CM) as a generalization of the Morphological Image Analysis (MIA) scheme originally proposed by Pyt’ev. The CMs are the mathematical shape theories, which solve the tasks of the image similarity estimation, image matching, and change detection by means of some special morphological models and tools. The original morphological change detection approach is based on the analysis of difference between the test image and its projection to the shape of reference image. In our generalized approach, the morphological filter-projector is substituted by the comparative morphological filter with weaker properties, which transforms the test image guided by the local shape of reference image. Following theoretical aspects are addressed in this chapter: the comparative morphology, change detection scheme based on morphological comparative filtering, diffusion morphology, and morphological filters based on guided contrasting. Following practical aspects are addressed: the pipeline for change detection in remote sensing data based on comparative morphology and implementation of change detection scheme based on both guided contrasting and diffusion morphology. The chapter also contains the results of qualitative and quantitative experiments on a wide set of real images including the public benchmark.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Singh, A.: Review article digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 10(6), 989–1003 (1989)

    Article  Google Scholar 

  2. Lu, D., Mausel, P., Brondízioc, E., Moran, E.: Change detection techniques. Int. J. Remote Sens. 25(12), 2365–2401 (2004)

    Article  Google Scholar 

  3. Chen, J., Lu, M., Chen, X., Chen, J., Chen, L.: A spectral gradient difference based approach for land cover change detection. ISPRS J. Photogramm. Remote Sens. 85, 1–12 (2013)

    Article  Google Scholar 

  4. Hussain, M., Chen, D., Cheng, A., Wei, H., Stanley, D.: Change detection from remotely sensed images: from pixel-based to object-based approaches. ISPRS J. Photogramm. Remote Sens. 80, 91–106 (2013)

    Article  Google Scholar 

  5. Pyt’ev, Y.P.: Morphological image analysis. Pattern Recognit. Image Anal. 3(1), 19–28 (1993)

    Google Scholar 

  6. Vizilter, Y., Pyt’ev, Y., Chulichkov, A., Mestetskiy, L.: Morphological image analysis for computer vision applications. In: Favorskaya, M.N., Jain, L.C. (eds.) Computer Vision in Control Systems-1. Mathematical Theory. Intelligent Systems Reference Library. vol. 73, pp. 9–58. Springer International Publishing, Switzerland (2015)

    Google Scholar 

  7. He, K., Sun, J., Tang, X.: Guided image filtering. In: Daniilidis, K., Maragos, P., Nikos Paragios, N. (eds.) Computer Vision—ECCV 2010, LNCS, vol. 6311, pp. 1–14. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Zhang, Q., Shen, X., Xu, L., Jia, J.: Rolling guidance filter. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision—ECCV 2014, LNCS, vol. 8691, pp. 815–830. Springer, Heidelberg (2014)

    Google Scholar 

  9. Vizilter, Y.V., Gorbatsevich, V.S., Rubis, A.Y., Zheltov, S.Y.: Shape-based image matching using heat kernels and diffusion maps. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XL(3), 357–364 (2014)

    Google Scholar 

  10. Vizilter, Y.V., Rubis, A.Y., Zheltov, S.Y., Vygolov, O.V.: Change detection via morphological comparative filters. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. III(3), 279–286 (2016)

    Google Scholar 

  11. Quarmby, N.A., Cushnie, J.L.: Monitoring urban land cover changes at the urban fringe from SPOT HRV imagery in south-east England. Int. J. Remote Sens. 10(6), 953–963 (1989)

    Article  Google Scholar 

  12. Coppin, P.R., Bauer, M.E.: Digital change detection in forest ecosystems with remote sensing imagery. Remote Sens. Rev. 13, 207–234 (1996)

    Article  Google Scholar 

  13. Lu, D., Mausel, P., Batistella, M., Moran, E.: Land-cover binary change detection methods for use in the moist tropical region of the Amazon: a comparative study. Int. J. Remote Sens. 26(1), 101–114 (2005)

    Article  Google Scholar 

  14. Gao, J.: Digital Analysis of Remotely Sensed Imagery. McGraw-Hill, New York (2009)

    Google Scholar 

  15. Howarth, P.J., Wickware, G.M.: Procedures for change detection using Landsat digital data. Int. J. Remote Sens. 2(3), 277–291 (1981)

    Article  Google Scholar 

  16. Ludeke, A.K., Maggio, R.C., Reid, L.M.: An analysis of anthropogenic deforestation using logistic regression and GIS. J. Environ. Manag. 31(3), 247–259 (1990)

    Article  Google Scholar 

  17. Lunetta, R.S.: Applications, project formulation, and analytical approach. In: Lunetta, R.S., Elvidge, C.D. (eds.) Remote Sensing Change Detection: Environmental Monitoring Methods and Applications, pp. 1–19. Taylor & Francis, London (1999)

    Google Scholar 

  18. Chen, J., Gong, P., He, C., Pu, R., Shi, P.: Land-use/land-cover change detection using improved change-vector analysis. Photogramm. Eng. Remote Sens. 69(4), 369–379 (2003)

    Article  Google Scholar 

  19. Nackaerts, K., Vaesen, K., Muys, B., Coppin, P.: Comparative performance of a modified change vector analysis in forest change detection. Int. J. Remote Sens. 26(5), 839–852 (2005)

    Article  Google Scholar 

  20. Bayarjargal, Y., Karnieli, A., Bayasgalan, M., Khudulmur, S., Gandush, C., Tucker, C.J.: A comparative study of NOAA–AVHRR derived drought indices using change vector analysis. Remote Sens. Environ. 105(1), 9–22 (2006)

    Article  Google Scholar 

  21. Richards, J.A.: Thematic mapping from multitemporal image data using the principal components transformation. Remote Sens. Environ. 16(1), 35–46 (1984)

    Article  Google Scholar 

  22. Deng, J.S., Wang, K., Deng, Y.H., Qi, G.J.: PCA-based land-use change detection and analysis using multitemporal and multisensor satellite data. Int. J. Remote Sens. 29(16), 4823–4838 (2008)

    Article  Google Scholar 

  23. Kauth, R.J., Thomas, G.S.: The tasselled cap—a graphic description of the spectral-temporal development of agricultural crops as seen by Landsat. In: Symposium on Machine Processing of Remotely Sensed Data, vol. 4(B), pp. 41–51 (1976)

    Google Scholar 

  24. Jin, S., Sader, S.A.: Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances. Remote Sens. Environ. 94(3), 364–372 (2005)

    Article  Google Scholar 

  25. Rogan, J., Franklin, J., Roberts, D.A.: A comparison of methods for monitoring multitemporal vegetation change using thematic mapper imagery. Remote Sens. Environ. 80(1), 143–156 (2002)

    Article  Google Scholar 

  26. Tomowski, D., Ehlers, M., Klonus, S.: Colour and texture based change detection for urban disaster analysis. In: Joint Urban Remote Sensing Event (JURSE’2011), pp. 329–332 (2011)

    Google Scholar 

  27. Erbek, F.S., Özkan, C., Taberner, M.: Comparison of maximum likelihood classification method with supervised artificial neural network algorithms for land use activities. Int. J. Remote Sens. 25(9), 1733–1748 (2004)

    Article  Google Scholar 

  28. Bouziani, M., Goïta, K., He, D.-C.: Automatic change detection of buildings in urban environment from very high spatial resolution images using existing geodatabase and prior knowledge. ISPRS J. Photogramm. Remote Sens. 6591, 143–153 (2010)

    Google Scholar 

  29. Im, J., Jensen, J.R.: A change detection model based on neighborhood correlation image analysis and decision tree classification. Remote Sens. Environ. 99(3), 326–340 (2005)

    Article  Google Scholar 

  30. Jensen, J.R.: Introductory Digital Image Processing: A Remote Sensing Perspective. Prentice Hall, Toronto (2005)

    Google Scholar 

  31. Miller, A.B., Bryant, E.S., Birnie, R.W.: An analysis of land cover changes in the Northern Forest of New England using multitemporal Landsat MSS data. Int. J. Remote Sens. 19(2), 245–265 (1998)

    Article  Google Scholar 

  32. Yuan, F., Sawaya, K.E., Loeffelholz, B.C., Bauer, M.E.: Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal landsat remote sensing. Remote Sens. Environ. 98(2–3), 317–328 (2005)

    Article  Google Scholar 

  33. Ji, W., Ma, J., Twibell, R.W., Underhill, K.: Characterizing urban sprawl using multi-stage remote sensing images and landscape metrics. Comput. Environ. Urban Syst. 30(6), 861–879 (2006)

    Article  Google Scholar 

  34. Ghosh, A., Mishra, N.S., Ghosh, S.: Fuzzy clustering algorithms for unsupervised change detection in remote sensing images. Inf. Sci. 181(4), 699–715 (2011)

    Article  Google Scholar 

  35. Chan, J.C.-W., Chan, K.-P., Yeh, A.G.-O.: Detecting the nature of change in an urban environment: a comparison of machine learning algorithms. Photogramm. Eng. Remote Sens. 67(2), 213–225 (2001)

    Google Scholar 

  36. Dai, X.L., Khorram, S.: Remotely sensed change detection based on artificial neural networks. Photogramm. Eng. Remote Sens. 65(10), 1187–1194 (1999)

    Google Scholar 

  37. Lillesand, T.M., Kiefer, R.W., Chipman, J.W.: Remote Sensing and Image Interpretation, 6th edn. Wiley, Hoboken, NJ (2008)

    Google Scholar 

  38. Lunetta, R.S., Knight, J.F., Ediriwickrema, J., Lyon, J.G., Worthy, L.D.: Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sens. Environ. 105(2), 142–154 (2006)

    Article  Google Scholar 

  39. Mas, J.F.: Monitoring land-cover changes: a comparison of change detection techniques. Int. J. Remote Sens. 20(1), 139–152 (1999)

    Article  MathSciNet  Google Scholar 

  40. Collins, J.B., Woodcock, C.E.: An assessment of several linear change detection techniques for mapping forest mortality using multitemporal landsat TM data. Remote Sens. Environ. 56(1), 66–77 (1996)

    Article  Google Scholar 

  41. Schowengerdt, R.A.: Techniques for Image Processing and Classification in Remote Sensing. Academic Press, New York (1983)

    Google Scholar 

  42. Gopal, S., Woodcock, C.: Remote sensing of forest change using artificial neural networks. IEEE Trans. Geosci. Remote Sens. 34(2), 398–404 (1996)

    Article  Google Scholar 

  43. Abuelgasim, A.A., Ross, W.D., Gopal, S., Woodcock, C.E.: Change detection using adaptive fuzzy neural networks: environmental damage assessment after the Gulf war. Remote Sens. Environ. 70(2), 208–223 (1999)

    Article  Google Scholar 

  44. Woodcock, C.E., Macomber, S.A., Pax-Lenney, M., Cohen, W.B.: Monitoring large areas for forest change using Landsat: generalization across space, time and Landsat sensors. Remote Sens. Environ. 78(1–2), 194–203 (2001)

    Article  Google Scholar 

  45. Liu, X., Lathrop, R.G.: Urban change detection based on an artificial neural network. Int. J. Remote Sens. 23(12), 2513–2518 (2002)

    Article  Google Scholar 

  46. Pijanowski, B.C., Pithadia, S., Shellito, B.A., Alexandridis, K.: Calibrating a neural network-based urban change model for two metropolitan areas of the Upper Midwest of the United States. Int. J. Geograph. Inf. Sci. 19(2), 197–215 (2005)

    Article  Google Scholar 

  47. Vapnik, V.N.: The Nature of Statistical Learning Theory, 2nd edn. Springer, New York (2000)

    Book  MATH  Google Scholar 

  48. Huang, C., Song, K., Kim, S., Townshend, J.R.G., Davis, P., Masek, J.G., Goward, S.N.: Use of a dark object concept and support vector machines to automate forest cover change analysis. Remote Sens. Environ. 112(3), 970–985 (2008)

    Article  Google Scholar 

  49. Bovolo, F., Bruzzone, L., Marconcini, M.: A novel approach to unsupervised change detection based on a semisupervised SVM and a similarity measure. IEEE Trans. Geosci. Remote Sens. 46(7), 2070–2082 (2008)

    Article  Google Scholar 

  50. Nemmour, H., Chibani, Y.: Multiple support vector machines for land cover change detection: an application for mapping urban extensions. ISPRS J. Photogramm. Remote Sens. 61(2), 125–133 (2006)

    Article  Google Scholar 

  51. Makkeasorn, A., Chang, N.-B., Li, J.: Seasonal change detection of riparian zones with remote sensing images and genetic programming in a semi-arid watershed. J. Environ. Manag. 90(2), 1069–1080 (2009)

    Article  Google Scholar 

  52. Pa, M.: Random forest classifier for remote sensing classification. Int. J. Remote Sens. 26(1), 217–222 (2005)

    Article  Google Scholar 

  53. Sesnie, S.E., Gessler, P.E., Finegan, B., Thessler, S.: Integrating Landsat TM and SRTM-DEM derived variables with decision trees for habitat classification and change detection in complex neotropical environments. Remote Sens. Environ. 112(5), 2145–2159 (2008)

    Article  Google Scholar 

  54. Smith, G.M.: The development of integrated object-based analysis of EO data within UK national land cover products object-based image analysis. In: Blaschke, T., Lang, S., Hay, G.J. (eds.) Object-Based Image Analysis, LNGC, pp. 513–528. Springer, Berlin, Heidelberg (2008)

    Chapter  Google Scholar 

  55. Yang, Q., Li, X., Shi, X.: Cellular automata for simulating land use changes based on support vector machines. Comput. Geosci. 34(6), 592–602 (2008)

    Article  Google Scholar 

  56. Lefebvre, A., Corpetti, T., Hubert-Moy, L.: Object-oriented approach and texture analysis for change detection in very high resolution images. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS’2008), pp. IV.663–IV.666 (2008)

    Google Scholar 

  57. Zhou, W., Troy, A., Grove, M.: Object-based land cover classification and change analysis in the baltimore metropolitan area using multitemporal high resolution remote sensing data. Sensors 8(3), 1613–1636 (2008)

    Article  Google Scholar 

  58. Miller, O., Pikaz, A., Averbuch, A.: Objects based change detection in a pair of gray-level images. Pattern Recognit. 38(11), 1976–1992 (2005)

    Article  Google Scholar 

  59. Hall, O., Hay, G.J.: A multiscale object-specific approach to digital change detection. Int. J. Appl. Earth Observ. Geoinf. 4(4), 311–327 (2003)

    Article  Google Scholar 

  60. Chant, T.D., Kelly, M.: Individual object change detection for monitoring the impact of a forest pathogen on a hard wood forest. Photogramm. Eng. Remote Sens. 75(8), 1005–1013 (2009)

    Article  Google Scholar 

  61. Hazel, G.G.: Object-level change detection in spectral imagery. IEEE Trans. Geosci. Remote Sens. 39(3), 553–561 (2001)

    Article  Google Scholar 

  62. Li, J., Narayanan, R.M.: A shape-based approach to change detection of lakes using time series remote sensing images. IEEE Trans. Geosci. Remote Sens. 41(11), 2466–2477 (2003)

    Article  Google Scholar 

  63. Blaschke, T.: Towards a framework for change detection based on image objects. Göttinger Geographische Abhandlungen 113, 1–9 (2005)

    Google Scholar 

  64. Durieux, L., Lagabrielle, E., Nelson, A.: A method for monitoring building construction in urban sprawl areas using object-based analysis of Spot 5 images and existing GIS data. ISPRS J. Photogramm. Remote Sens. 63(4), 399–408 (2008)

    Article  Google Scholar 

  65. Hansen, M.C., Loveland, T.R.: A review of large area monitoring of land cover change using Landsat data. Remote Sens. Environ. 122, 66–74 (2012)

    Article  Google Scholar 

  66. Holland, D.A., Sanchez-Hernandez, C., Gladstone, C.: Detecting changes to topographic features using high resolution imagery. In: XXXVII ISPRS Congress Proceedings, pp. 1153–1158 (2008)

    Google Scholar 

  67. Xian, G., Homer, C.: Updating the 2001 national land cover database impervious surface products to 2006 using Landsat imagery change detection methods. Remote Sens. Environ. 114(8), 1676–1686 (2010)

    Article  Google Scholar 

  68. Xian, G., Homer, C., Fry, J.: Updating the 2001 national land cover database land cover classification to 2006 by using Landsat imagery change detection methods. Remote Sens. Environ. 113(6), 1133–1147 (2009)

    Article  Google Scholar 

  69. Desclée, B., Bogaert, P., Defourny, P.: Forest change detection by statistical object-based method. Remote Sens. Environ. 102(1–2), 1–11 (2006)

    Article  Google Scholar 

  70. Gamanya, R., De Maeyer, P., De Dapper, M.: Object-oriented change detection for the city of Harare, Zimbabwe. Expert Syst. Appl. 36(1), 571–588 (2009)

    Article  Google Scholar 

  71. Bontemps, S., Bogaert, P., Titeux, N., Defourny, P.: An object-based change detection method accounting for temporal dependences in time series with medium to coarse spatial resolution. Remote Sens. Environ. 112(6), 3181–3191 (2008)

    Article  Google Scholar 

  72. Conchedda, G., Durieux, L., Mayaux, P.: An object-based method for mapping and change analysis in mangrove ecosystems. ISPRS J. Photogramm. Remote Sens. 63(5), 578–589 (2008)

    Article  Google Scholar 

  73. Stow, D., Hamada, Y., Coulter, L., Anguelova, Z.: Monitoring shrubland habitat changes through object-based change identification with airborne multispectral imagery. Remote Sens. Environ. 112(3), 1051–1061 (2008)

    Article  Google Scholar 

  74. Duveiller, G., Defourny, P., Desclée, B., Mayaux, P.: Deforestation in Central Africa: Estimates at regional, national and landscape levels by advanced processing of systematically-distributed Landsat extracts. Remote Sens. Environ. 112(5), 1969–1981 (2008)

    Article  Google Scholar 

  75. Al-Khudhairy, D.H.A., Caravaggi, I., Giad, S.: Structural damage assessments from Ikonos data using change detection, object-oriented segmentation, and classification techniques. Photogramm. Eng. Remote Sens. 71(5), 825–837 (2005)

    Article  Google Scholar 

  76. Niemeyer, I., Nussbaum, S.: Change detection: The potential for nuclear safeguards verifying treaty compliance. In: Avenhaus, R., Kyriakopoulos, N., Richard, M., Stein, G. (eds.) Verifying Treaty Compliance, pp. 335–348. Springer, Berlin Heidelberg (2006)

    Chapter  Google Scholar 

  77. McDermid, G.J., Linke, J., Pape, A.D., Laskin, D.N., McLane, A.J., Franklin, S.E.: Object-based approaches to change analysis and thematic map update: challenges and limitations. Can. J. Remote Sens. 34(5), 462–466 (2008)

    Article  Google Scholar 

  78. Niemeyer, I., Marpu, P.R., Nussbaum, S.: Change detection using object features. In: Blaschke, T., Lang, S., Hay, G.J. (eds.) Object-Based Image Analysis: Spatial Concepts for Knowledge-Driven Remote Sensing Applications, LNGC, pp. 185–201. Springer, Berlin, Heidelberg (2008)

    Chapter  Google Scholar 

  79. Pyt’ev, Y.P.: The morphology of color (multispectral) images. Pattern Recognit. Image Anal. 7(4), 467–473 (1997)

    Google Scholar 

  80. Pyt’ev, Y.P., Falomkin, I.I., Chulichkov, A.I.: Morphological compression of grayscale images of text. Pattern Recognit. Image Anal. 16(3), 523–528 (2006)

    Google Scholar 

  81. Evsegneev, S.O., Pyt’ev, Y.P.: Analysis and recognition of piecewise constant texture images. Pattern Recognit. Image Anal. 16(3), 398–405 (2006)

    Google Scholar 

  82. Vizilter, Y.V., Zheltov, S.Y.: Geometrical correlation and matching of 2D image shapes. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. I-3, 191–196 (2012)

    Google Scholar 

  83. Pyt’ev, Y.P.: Oblique projectors and relative forms in image morphology. J. Comput. Math. Math. Phys. 53(1), 1916–1937 (2013)

    Google Scholar 

  84. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, Inc., Orlando (1982)

    MATH  Google Scholar 

  85. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Trans. Med. Imaging 16(2), 187–198 (1997)

    Article  Google Scholar 

  86. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  87. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  88. Scholkopf, B., Smola, A.J., Muller, K.-R.: Kernel principal component analysis. In: Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods: Support Vector Learning, pp. 327–352. MIT Press (1999)

    Google Scholar 

  89. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. Adv. Neural. Inf. Process. Syst. 14, 585–591 (2001)

    Google Scholar 

  90. Donoho, D., Grimes, C.: Hessian eigenmaps: locally linear embedding techniques for high dimensional data. Proc. Natl. Acad. Sci. 100(10), 5591–5596 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  91. Gashler, M., Ventura, D., Martinez, T.: Iterative non-linear dimensionality reduction by manifold sculpting. Adv. Neural Inf. Process. Syst. 20, 513–520 (2008)

    Google Scholar 

  92. Lafon, S.: Diffusion Maps and Geometric Harmonics. Ph.D. thesis, Yale University, Department of Mathematics & Applied Mathematics (2004)

    Google Scholar 

  93. Coifman, R., Lafon, S.: Diffusion maps. Appl. Comput. Harmon. Anal. 21(1), 5–30 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  94. Coifman, R., Lafon, S., Maggioni, M., Keller, Y., Szlam, A., Warner, F., Zucker, S.: Geometries of sensor outputs, inference and information processing.  Proc. SPIE Intell. Integr. Microsyst. 6232 (2006). doi:10.1117/12.669723

  95. Takeda, H., Farsiu, S., Milanfar, P.: Kernel regression for image processing and reconstruction. IEEE Trans. Image Process. 16(2), 349–366 (2007)

    Article  MathSciNet  Google Scholar 

  96. Milanfar, P.: A tour of modern image filtering. IEEE Signal Process. Mag. 30(1), 106–128 (2013)

    Article  MathSciNet  Google Scholar 

  97. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. In: Eurographics Symposium on Geometry Processing, vol. 28, no. 5, pp. 1383–1392 (2009)

    Google Scholar 

  98. de Goes, F., Goldenstein, S., Velho, L.: A hierarchical segmentation of articulated bodies. Comput. Graph. Forum 27(5), 1349–1356 (2008)

    Article  Google Scholar 

  99. Lieu, L., Saito, N.: High dimensional pattern recognition using diffusion maps and Earth Mover’s distance (2008). https://www.math.ucdavis.edu/~saito/publications/saito_prdmemd.pdf. Accessed 7 July 2017

  100. Reuter, M., Wolter, F.-E., Peinecke, N.: Laplace-Beltrami spectra as “Shape-DNA” of surfaces and solids. Comput. Aided Des. 38(4), 342–366 (2006)

    Article  Google Scholar 

  101. Memoli, F.: A spectral notion of Gromov-Wasserstein distance and related methods. App. Comput. Harmon. Anal. 30(3), 363–401 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  102. Ahonen, T., Hadid, A., Pietikainen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J. (eds.) Computer Vision—ECCV 2004, Part 1, LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  103. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by Russian Science Foundation (RSF), Grant 16-11-00082.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Vizilter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Vizilter, Y., Rubis, A., Vygolov, O., Zheltov, S. (2018). Vision-Based Change Detection Using Comparative Morphology. In: Favorskaya, M., Jain, L. (eds) Computer Vision in Control Systems-3. Intelligent Systems Reference Library, vol 135. Springer, Cham. https://doi.org/10.1007/978-3-319-67516-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67516-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67515-2

  • Online ISBN: 978-3-319-67516-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics