Skip to main content

Machine Learning Applied to Optometry Data

  • Chapter
  • First Online:
Advances in Biomedical Informatics

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 137))

Abstract

Optometry is the primary health care of the eye and visual system. It involves detecting defects in vision, signs of injury, ocular diseases as well as problems with general health that produce side effects in the eyes. Myopia, presbyopia, glaucoma or diabetic retinopathy are some examples of conditions that optometrists usually diagnose and treat. Moreover, there is another condition that we have all experienced once in a while, especially if we work with computers or have been exposed to smoke or wind. Dry eye syndrome (DES) is a hidden multifactorial disease related with the quality and quantity of tears. It causes discomfort and could lead to severe visual problems. In this chapter, we explain how machine learning techniques can be applied in some DES medical tests in order to produce an objective, repeatable and automatic diagnosis. The results of our experiments show that the proposed methodologies behave like the experts so that they can be applied in the daily practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Autoimmune disorder that affects the glands that secrete fluids.

References

  1. Paulsen, A.J., Cruickshanks, K.J., Fischer, M.E., Huang, G., Klein, B.E.K., Klein, R., Dalton, D.S.: Dry eye in the beaver dam offspring study: prevalence, risk factors, and health-related quality of life. Am. J. Ophthalmol. 157(4), 799–806 (2014)

    Article  Google Scholar 

  2. Gayton, J.L.: Etiology, prevalence, and treatment of dry eye disease. Clin. Ophthalmol. 3, 405–412 (2009)

    Article  Google Scholar 

  3. Yu, J., Asche, C.V., Fairchild, C.J.: The economic burden of dry eye disease in the united states: a decision tree analysis. Cornea 30(4), 379–387 (2011)

    Article  Google Scholar 

  4. Lemp, M.A., Baudouin, C., Baum, J., et al.: The definition and classification of dry eye disease: report of the definition and classification subcommittee of the international dry eye workshop. Ocul. Surf. 5(2), B75–B92 (2007)

    Google Scholar 

  5. Craig, J.P., Tomlinson, A.: Importance of the lipid layer in human tear film stability and evaporation. Optom. Vis. Sci. 74, 8–13 (1997)

    Article  Google Scholar 

  6. Guillon, J.P.: Non-invasive tearscope plus routine for contact lens fitting. Contact Lens and Anterior Eye 21(Suppl 1), 31–40 (1998)

    Article  Google Scholar 

  7. Korb, D.R.: The Tear Film: Structure, Function, and Clinical Examination. Elsevier Health Sciences, Amsterdam (2002)

    Google Scholar 

  8. Nichols, J.J., Nichols, K.K., Puent, B., Saracino, M., Mitchell, G.L.: Evaluation of tear film interference patterns and measures of tear break-up time. Optom. Vis. Sci. 79(6), 363–369 (2002)

    Article  Google Scholar 

  9. Calvo, D., Mosquera, A., Penas, M., García-Resúa, C., Remeseiro, B.: Color texture analysis for tear film classification: a preliminary study. Int. Conf. Image Anal. Recogn. 6112, 388–397 (2010)

    Google Scholar 

  10. Ramos, L., Penas, M., Remeseiro, B., Mosquera, A., Barreira, N., Yebra-Pimentel, E.: Texture and color analysis for the automatic classification of the eye lipid layer. Int. Work Conf. Artif. Neural Netw. 6692, 66–73 (2011)

    Google Scholar 

  11. Remeseiro, B., Penas, M., Mosquera, A., Novo, J., Penedo, M.G., Yebra-Pimentel, E.: Statistical comparison of classifiers applied to the interferential tear film lipid layer automatic classification. Comput. Math. Methods Med. 2012, 1–10 (2012)

    Article  MATH  Google Scholar 

  12. Remeseiro, B., Penas, M., Barreira, N., Mosquera, A., Novo, J., García-Resúa, C.: Automatic classification of the interferential tear film lipid layer using colour texture analysis. Comput. Methods Programs Biomed. 111, 93–103 (2013)

    Article  Google Scholar 

  13. Remeseiro, B., Bolón-Canedo, V., Peteiro-Barral, D., Alonso-Betanzos, A., Guijarro-Berdinas, B., Mosquera, A., Penedo, M.G., Sánchez-Marono, N.: A methodology for improving tear film lipid layer classification. IEEE J. Biomed. Health Inf. 18(4), 1485–1493 (2014)

    Google Scholar 

  14. Remeseiro, B., Mosquera, A., Penedo, M.G., Garca-Resúa, C.: Tear film maps based on the lipid interference patterns. 6th Int. Conf. Agents Artif. Int. 1, 732–739 (2014)

    Google Scholar 

  15. Remeseiro, B., Mosquera, A., Penedo, M.G.: CASDES: a computer-aided system to support dry eye diagnosis based on tear film maps. IEEE J. Biomed. Health Inf. 20(3), 936–943 (2016)

    Article  Google Scholar 

  16. Remeseiro, B., Barreira, N., Garca-Resúa, C., Lira, M., Giráldez, M.J., Yebra-Pimentel, E., Penedo, M.G.: iDEAS: a web-based system for dry eye assessment. Comput. Methods Prog. Biomed. 130, 186–197 (2016)

    Article  Google Scholar 

  17. González-Domínguez, J., Remeseiro, B., Martín, M.J.: Acceleration of tear film map definition on multicore systems. Procedia Comput. Sci. 80, 41–51 (2016)

    Google Scholar 

  18. González-Domínguez, J., Remeseiro, B., Martín, M.J.: Parallel definition of tear film maps on distributed-memory clusters for the support of dry eye diagnosis. Comput. Methods Programs Biomed. 139, 51–60 (2017)

    Google Scholar 

  19. Méndez, R., Remeseiro, B., Peteiro-Barral, D., Penedo, M.G.: Evaluation of class binarization and feature selection in tear film classification using topsis. Agents Artif. Intell. Revised Selected Papers ICAART 2013 2014(449), 179–193 (2014)

    Google Scholar 

  20. Peteiro-Barral, D., Remeseiro, B., Méndez, R., Penedo, M.G.: Evaluation of an automatic dry eye test using MCDM methods and rank correlation. Med. Biol. Eng. Comput. 55(4), 527–536 (2017)

    Article  Google Scholar 

  21. VOPTICAL_I1, VARPA optical dataset acquired and annotated by optometrists from the Optometry Service of the University of Santiago de Compostela, Spain (2012)

    Google Scholar 

  22. Russ, J.C.: The Image Processing Handbook, 3rd edn. CRC Press Inc, Boca Raton, FL, USA (1999)

    MATH  Google Scholar 

  23. McLaren, K.: The development of the CIE 1976 (L*a*b) uniform colour-space and colour-difference formula. J. Soc. Dyers Colour. 92(9), 338–341 (1976)

    Article  Google Scholar 

  24. Bradski, G.: OpenCV. Dr. Dobb’s J Softw. Tools 25, 120–126 (2000)

    Google Scholar 

  25. Haralick, R.M., Shanmugam, K., Dinstein, I.: Texture features for image classification. IEEE Trans. Sys. Man Cybern. 3, 610–621 (1973)

    Article  Google Scholar 

  26. Furnkranz, J.: Round robin ensembles. Int. Data Anal. 7(5), 385–403 (2003)

    Google Scholar 

  27. Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. J. Artif. Intell. Res. 2, 263–286 (1995)

    MATH  Google Scholar 

  28. Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing multiclass to binary: a unifying approach for margin classifiers. J. Mach. Learn. Res. 1, 113–141 (2001)

    MATH  MathSciNet  Google Scholar 

  29. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval, vol. 1. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  30. Loughrey, J., Cunningham, P.: Overfitting in wrapper-based feature subset selection: the harder you try the worse it gets. Res. Dev. Intell. Sys. XXI, 2005, 33–43 (2005)

    Google Scholar 

  31. Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.: Feature Extraction: Foundations and Applications. Springer Verlag, Berlin (2006)

    Book  MATH  Google Scholar 

  32. Hall, M.A.: Correlation-based feature selection for machine learning. PhD thesis, The University of Waikato (1999)

    Google Scholar 

  33. Dash, M., Liu, H.: Consistency-based search in feature selection. Artif. Intell. 151(1–2), 155–176 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  34. Zhao, Z., Liu, H.: Searching for interacting features. Proceedings of the 20th international joint conference on Artificial intelligence, 1156–1161 (2007)

    Google Scholar 

  35. Mitchell, T.M.: Machine Learning. McGraw-Hill, Boston (1995)

    MATH  Google Scholar 

  36. Friedman, J.H.: Regularized discriminant analysis. J. Am. Stat. Assoc. 84, 165–175 (1989)

    Article  MathSciNet  Google Scholar 

  37. Jensen, F.V.: An Introduction to Bayesian Networks, vol. 210. UCL press, London (1996)

    Google Scholar 

  38. Murthy, S.K.: Automatic construction of decision trees from data: a multi-disciplinary survey. Data Min. Knowl. Disc. 2, 345–389 (1998)

    Article  Google Scholar 

  39. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2, 121–167 (1998)

    Article  Google Scholar 

  40. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386 (1958)

    Article  Google Scholar 

  41. Fernandez-Caballero, J.C., Martnez, F.J., Hervás, C., Gutiérrez, P.A.: Sensitivity versus accuracy in multiclass problems using memetic pareto evolutionary neural networks. IEEE Trans. Neural Networks 21(5), 750–770 (2010)

    Article  Google Scholar 

  42. Hwang, C.L., Yoon, K.: Multiple Attribute Decision Making: Methods and Applications, vol. 13. Springer-Verlag, New York (1981)

    Book  MATH  Google Scholar 

  43. Kuo, Y., Yang, T., Huang, G.W.: The use of grey relational analysis in solving multiple attribute decision-making problems. Comput. Ind. Eng. 55(1), 80–93 (2008)

    Article  Google Scholar 

  44. Opricovic, S.: Multicriteria optimization of civil engineering systems. Fac. Civil Eng. Belgrade 2(1), 5–21 (1998)

    MathSciNet  Google Scholar 

  45. Gautheir, T.D.: Detecting trends using spearman’s rank correlation coefficient. Environ. Forensics 2(4), 359–362 (2001)

    Article  Google Scholar 

  46. Chang, C., Lin, C.: LIBSVM: A library for support vector machines. ACM Trans. on Intell. Sys. Tech. 2, 1–27, http://www.csie.ntu.edu.tw/cjlin/libsvm (2011)

  47. Bramer, M.: Principles of Data Mining, vol. 180. Springer, London (2007)

    MATH  Google Scholar 

  48. Yoneda, T., Sumi, T., Takahashi, A., Hoshikawa, Y., Kobayashi, M., Fukushima, A.: Automated hyperemia analysis software: reliability and reproducibility in healthy subjects. Jpn. J. Ophthalmol. 56(1), 1–7 (2012)

    Article  Google Scholar 

  49. Rodriguez, J.D., Johnston, P.R., Ousler, G.W., Smith, L.M., Abelson, M.B.: Automated grading system for evaluation of ocular redness associated with dry eye. Clin. Ophthalmol. 7, 1197 (2013)

    Article  Google Scholar 

  50. Wu, S., Hong, J., Tian, L., Cui, X., Sun, X., Xu, J.: Assessment of bulbar redness with a newly developed keratograph. Optom. Vis. Sci. 92(8), 892–899 (2015)

    Article  Google Scholar 

  51. Tort, M., Ornberg, R., Lay, B., Danno, R., Soong, F., Salapatek, A.: Development of an objective assessment of conjunctival hyperemia elicited via Conjunctival Allergen Provocation Testing (CAPT) and Environmental Exposure Chamber (EEC) testing. EEC (N = 13) 2, 5 (2012)

    Google Scholar 

  52. Wald, M.J., Lay, B., Danno, R., Grosskreutz, C.L., Chandra, S.: Performance of automated hyperemia assessment in allergic conjunctivitis interventional study. Invest. Ophthalmol. Vis. Sci. 56, 12300 (2015)

    Google Scholar 

  53. Downie, L.E., Keller, P.R., Vingrys, A.J.: Assessing ocular bulbar redness: a comparison of methods. Ophthalmic Physiol. Opt. 36(2), 132–139 (2016)

    Article  Google Scholar 

  54. Amparo, F., Wang, H., Emami-Naeini, P., Karimian, P., Dana, R.: The ocular redness index: a novel automated method for measuring ocular injectiona novel automated system to measure redness. Invest. Ophthalmol. Vis. Sci. 54(7), 4821–4826 (2013)

    Article  Google Scholar 

  55. Papas, E.B.: Key factors in the subjective and objective assessment of conjunctival erythema. Invest. Ophthalmol. Vis. Sci. 41(3), 687–691 (2000)

    Google Scholar 

  56. Wolffsohn, J.S., Purslow, C.: Clinical monitoring of ocular physiology using digital image analysis. Contact Lens and Anterior Eye 26(1), 27–35 (2003)

    Article  Google Scholar 

  57. Efron, N., Morgan, P.B., Katsara, S.S.: Validation of grading scales for contact lens complications. Ophthalmic Physiol. Opt. 21(1), 17–29 (2001)

    Google Scholar 

  58. Fieguth, P., Simpson, T.: Automated measurement of bulbar redness. Invest. Ophthalmol. Vis. Sci. 43(2), 340–347 (2002)

    Google Scholar 

  59. Murphy, P.J., Lau, J.S.C., Sim, M.M.L., Woods, R.L.: How red is a white eye? Clinical grading of normal conjunctival hyperemia. Eye 21(5), 633–638 (2007)

    Article  Google Scholar 

  60. Wolffsohn, J.S.: Incremental nature of anterior eye grading scales determined by objective image analysis. Br. J. Ophthalmol. 88(11), 1434–1438 (2004)

    Article  Google Scholar 

  61. Sánchez, L., Barreira, N., Pena-Verdeal, H., Yebra-Pimentel, E.: A Novel Framework for Hyperemia Grading Based on Artificial Neural Networks, pp. 263–275. Springer, Heidelberg (2015)

    Google Scholar 

  62. Sánchez, L., Barreira, N., Sánchez, N., Mosquera, A., Pena-Verdeal, H., Yebra-Pimentel, E.: On the analysis of local and global features for hyperemia grading. Ninth Int. Conf. Mach. Vis. 10341, 103411T–103411T (2017)

    Article  Google Scholar 

  63. Sánchez-Brea, M.L., Barreira-Rodrguez, N., Mosquera-González, A., Evans, K., Pena-Verdeal, H.: Defining the optimal region of interest for hyperemia grading in the bulbar conjunctiva. Comput. Math. Methods Med. 2016, 1–9 (2016)

    Google Scholar 

  64. Vázquez, S.G., Barreira, N., Penedo, M.G., Pena-Seijo, M., Gómez-Ulla, F.: Evaluation of SIRIUS retinal vessel width measurement in REVIEW dataset. IEEE 26th Int. Symp. Comp. Med. Syst. 2013, 71–76 (2013)

    Google Scholar 

  65. Robnik-Šikonja, M., Kononenko, I.: An adaptation of Relief for attribute estimation in regression. In Machine Learning: Proceedings of the Fourteenth International Conference, 296–304 (1997)

    Google Scholar 

  66. Quinlan, J.R.: Learning with continuous classes. Aust. Jt Conf. Artif. Intell. 92, 343–348 (1992)

    Google Scholar 

  67. Shevade, S.K., Keerthi, S.S., Bhattacharyya, C., Murthy, K.R.K.: Improvements to the SMO algorithm for SVM regression. IEEE Trans. Neural Netw. 11(5), 1188–1193 (2000)

    Article  MATH  Google Scholar 

  68. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46(1–3), 389–422 (2002)

    Article  MATH  Google Scholar 

  69. Sánchez-Brea, M.L., Barreira, N., Sánchez-Maroño, N., Mosquera, A., García-Resúa, C., Giráldez-Fernández, M.J.: On the development of conjunctival hyperemia computer-assisted diagnosis tools: Influence of feature selection and class imbalance in automatic gradings. Artif. Intell. Med. 71, 30–42 (2016)

    Google Scholar 

  70. Sanchez, L., Barreira, N., Mosquera, A., Pena-Verdeal, H., Yebra-Pimentel, E.: Comparing machine learning techniques in a hyperemia grading framework. Int. Conf. Agents Artif. Intell. 2, 423–429 (2016)

    Google Scholar 

  71. Baum, E.B.: On the capabilities of multilayer perceptrons. J Complexity 4(3), 193–215 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  72. Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Comput. 3(2), 246–257 (1991)

    Article  Google Scholar 

  73. Kohonen, T.: The self-organizing map. Neurocomputing 21(1–3), 1–6 (1998)

    Article  MATH  Google Scholar 

  74. Kohonen, T.: Improved versions of learning vector quantization. Int. Jt Conf. Neural Netw. 1990, 545–550 (1990)

    Google Scholar 

  75. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)

    Google Scholar 

  76. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  77. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14(3), 199–222 (2004)

    Article  MathSciNet  Google Scholar 

  78. Dudani, S.A.: The distance-weighted k-nearest-neighbor rule. IEEE Trans. Syst. Man Cybern. 6(4), 325–327 (1976)

    Article  Google Scholar 

  79. Abdi, H.: Partial least square regression (PLS regression). Encycl. Res. Methods Soc. Sci. 6(4), 792–795, 2003

    Google Scholar 

  80. John, G.H., Langley, P.: Estimating continuous distributions in bayesian classifiers.Conf. Uncertainty Artif. Intell. 1995, 338–345, (1995)

    Google Scholar 

  81. Abelson, M.B., Ousler, G.W., Nally, L.A., Welch, D., Krenzer, K.: Alternative reference values for tear film break up time in normal and dry eye Populations. In Lacrimal Gland, Tear Film, and Dry Eye Syndromes 3, pp. 1121–1125. Springer, New York (2002)

    Google Scholar 

  82. King-Smith, P.E., Fink, B.A., Nichol J.J., Braun, R.J., McFadden, G.B.: The contribution of lipid layer movement to tear film thinning and breakup. Invest. Opthalmol. Vis. Sci. 50, 2747–2756 (2009)

    Google Scholar 

  83. Bitton, E., Lovasik, J. V.: Longitudinal analysis of precorneal tear film rupture patterns. In Lacrimal Gland, Tear Film, and Dry Eye Syndromes 2, pp. 381–389. Springer, New York (1998)

    Google Scholar 

  84. Yedidya,T., Hartley, R., Guillon, J.P.: Automatic detection of pre-ocular tear film break-up sequence in dry eyes. Digit. Image Comput. Tech. and Appl., 2008, 442–448 (2008)

    Google Scholar 

  85. Cebreiro, E., Ramos, L., Mosquera, A., Barreira, N., Penedo, M.G.: Automation of the tear film break-up time test. Proceedings of the 4th International Symposium on Applied Sciences in Biomedical and Communication Technologies, 123 (2011)

    Google Scholar 

  86. Ramos, L., Barreira, N., Mosquera, A., Currás, M., Pena-Verdeal, H. Giráldez, M.J., Penedo, M.G: Adaptive parameter computation for the automatic measure of the Tear Break-Up Time. 16th International Conference on Knowledge-Based and Intelligent Information & Engineering Systems, 243, 1370–1379 (2012)

    Google Scholar 

  87. Ramos, L., Barreira, N., Mosquera, A., Penedo, M.G., Yebra-Pimentel, E., García-Resúa, C.: Analysis of parameters for the automatic computation of the tear film break-up time test based on cclru standards. Comput. Methods Programs Biomed. 113(3), 715–724 (2014)

    Article  Google Scholar 

  88. Ramos, L., Barreira, N., Pena-Verdeal, H., Giráldez, M.J., Yebra-Pimentel, E.: Computational approach for tear film assessment based on break-up dynamics. Biosys. Eng. 138, 90–103 (2015)

    Article  Google Scholar 

  89. Ramos, L., Barreira, N., Mosquera, A., Pena-Verdeal, H., Yebra-Pimentel, E.: Break-up analysis of the tear film based on time, location, size and shape of the rupture area. International Conference Image Analysis and Recognition, 695–702 (2013)

    Google Scholar 

  90. Foracchia, M., Grisan, E., Ruggeri, A.: Luminosity and contrast normalization in retinal images. Med. Image Anal. 9(3), 179–190 (2005)

    Article  Google Scholar 

  91. Arora, S., Acharya, J., Verma, A., Prasanta, K.: Panigrahi. Multilevel thresholding for image segmentation through a fast statistical recursive algorithm. Pattern Recogn. Lett. 29(2), 119–125 (2008)

    Article  Google Scholar 

  92. Dougherty, E.R.: An introduction to morphological image processing. SPIE Optical Engineering Press, Tutorial texts in optical engineering (1992)

    Google Scholar 

  93. Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Comput. Vis. Graph. Image Process. 30(1), 32–46 (1985)

    Article  MATH  Google Scholar 

  94. Hu, M.: Visual pattern recognition by moment invariants, computer methods in image analysis. IRE Trans. Inf. Theory 8, 179–187 (1962)

    Google Scholar 

  95. Reed-Teague, M.: Image analysis via the general theory of moments. J. Opt. Soc. Am. 70(8), 920–930 (1980)

    Article  MathSciNet  Google Scholar 

  96. Nunes, J.F., Moreira, P.M., Tavares, J.M.R.S: Shape based image retrieval and classification. 5th Iberian Conference on Information Systems and Technologies (2010)

    Google Scholar 

  97. Rodriguez, J., Perez, A., Lozano, J.: Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Trans. Pattern Anal. Mach. Intell. 32(3), 569–575 (2010)

    Article  Google Scholar 

  98. Jolliffe, I.T.: Principal Component Analysis. Springer Verlag, New York (1986)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work has been partially funded by the Ministerio de Economía y Competitividad of Spain (project DPI2015-69948-R). Beatriz Remeseiro acknowledges the support of the Ministerio de Economía y Competitividad of the Spanish Government under Juan de la Cierva Program (ref. FJCI-2014-21194).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz Remeseiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Remeseiro, B., Barreira, N., Sánchez-Brea, L., Ramos, L., Mosquera, A. (2018). Machine Learning Applied to Optometry Data. In: Holmes, D., Jain, L. (eds) Advances in Biomedical Informatics. Intelligent Systems Reference Library, vol 137. Springer, Cham. https://doi.org/10.1007/978-3-319-67513-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67513-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67512-1

  • Online ISBN: 978-3-319-67513-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics