Skip to main content

Spatial Modeling of Land Cover/Land Use Change and Its Effects on Hydrology Within the Lower Mekong Basin

  • Chapter
  • First Online:

Part of the book series: Springer Remote Sensing/Photogrammetry ((SPRINGERREMO))

Abstract

The Lower Mekong Basin is an economically and ecologically important region that is vulnerable to effects of climate variability and land cover changes. To effectively develop long-term plans for addressing these changes, responses to climate variability and land cover change must be evaluated. This research aims to investigate how the land cover change will affect hydrologic parameters both spatially and temporally within the Lower Mekong Basin. The research goal is achieved by (1) modeling land cover change for a baseline land cover change scenario as well as changes in land cover with increases in forest or agriculture and (2) using modeled land cover data as inputs into the Variable Infiltration Capacity (VIC) hydrologic model to simulate the changes to the hydrologic system. The VIC model outputs were analyzed against historic values to understand to what degree land cover changes affect the hydrology of the region and where within the region these changes occur. This study found that increasing forest area will slightly decrease discharge and increase evapotranspiration whereas increasing agriculture area increases discharge and decreases evapotranspiration. These findings will benefit the Lower Mekong Basin by supporting individual country, as well as basin-wide, policy for effective land management for water resources management changes as well as policy for the basin as a whole.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdulla FA, Lettenmaier DP, Wood EF, Smith JA (1996) Application of a macroscale hydrologic model to estimate the water balance of the Arkansas–Red River Basin. J Geophys Res 101:7449–7459

    Article  Google Scholar 

  • Al-Hamdan MZ et al (2017) Evaluating land cover changes in Eastern and Southern Africa using validated Landsat and MODIS data. Int J Appl Earth Observ Geoinf 62:8–26. https://doi.org/10.1016/j.jag.2017.04.007

    Article  Google Scholar 

  • Berrisford P et al (2011) Atmospheric conservation properties in ERA-Interim. Q J R Meteorol Soc 137:1381–1399

    Article  Google Scholar 

  • Bowling LC, Lettenmaier DP (2010) Modeling the effects of lakes and wetlands on the water balance of arctic environments. J Hydrometeorol 11(2):276–295

    Article  Google Scholar 

  • Bowling LC, Pomeroy JW, Lettenmaier DP (2004) Parameterization of blowing-snow sublimation in a macroscale hydrology model. J Hydrometeorol 5(5):745–762

    Article  Google Scholar 

  • Brovkin V, Sitch S, von Bloh W, Claussen M, Bauer E, Cramer W (2004) Role of land cover change for atmospheric CO2 increase and climate change during the last 150 years. Glob Chang Biol 10:1253–1266

    Article  Google Scholar 

  • Burn DH (1997) Catchment similarity for regional flood frequency analysis using seasonality measures. J Hydrol 202:212–230

    Article  Google Scholar 

  • Clay DE et al (2016) Does the U.S. cropland data layer provide and accurate benchmark for land-use change estimates? Agron J 108:266–272

    Article  Google Scholar 

  • Cong Thanh N, Singh B (2006) Trend in rice production and export in Vietnam. Omonrice 14:11–123

    Google Scholar 

  • Costa-Cabral MC et al (2008) Landscape structure and use, climate, and water movement in the Mekong River Basin. Hydrol Process 22:1731–1746

    Article  Google Scholar 

  • Costenbader J, Broadhead JS, Yasmi Y, Durst PB (2015a) Drivers affecting forest change in the GMS: an overview. FAO/USAID LEAF, Sept 2015

    Google Scholar 

  • Costenbader J, Varns T, Vidal A, Stanley L, Broadhead JS (2015b) Drivers of forest change in the greater Mekong subregion. Regional Report, FAO/USAID LEAF, Sept 2015

    Google Scholar 

  • Cuo L et al (2011) Effects of mid-twenty-first century climate and land cover change on the hydrology of the Puget Sound basin, Washington. Hydrol Process 25:1729–1753

    Article  Google Scholar 

  • Danielson JJ, Gesch DB (2011) Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). Open File Report, US Geological Survey, Reston

    Google Scholar 

  • Decker M et al (2012) Evaluation of the reanalysis products from GSFC, NCEP, and ECMWF using flux tower observations. J Clim 25:1916–1943

    Article  Google Scholar 

  • Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Dobson JE et al (2000) A global population database for estimating populations at risk. Photogramm Eng Remote Sens 66(7):849–857

    Google Scholar 

  • Dudgeon D (2000) Large-scale hydrological changes in tropical Asia: prospects for riverine biodiversity. Bioscience 50:793–806

    Article  Google Scholar 

  • Dwarakish GS, Ganasri BP (2015) Impact of land use change on hydrologic systems: a review of current modeling approaches. Cogent Geosci 1:1115691

    Article  Google Scholar 

  • Eastham J et al (2008) Mekong river basin water resource assessment: impacts of climate change. Technical Report, CSIRO

    Google Scholar 

  • ECMWF (European Centre for Medium-Range Weather Forecasts) (2009) (updated monthly) ERA-Interim Project. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. https://doi.org/10.5065/D6CR5RD9. Accessed 31 Mar 2016

  • Fernandes R, Leblanc SG (2005) Parametric (modified least squares) and non-parametric (Theil-Sen) linear regressions for predicting biophysical parameters in the presence of measurement errors. Remote Sens Environ 95:303–316

    Article  Google Scholar 

  • Foody GM (2002) Status of land cover classification accuracy assessment. Remote Sens Environ 80:185–201

    Article  Google Scholar 

  • Francisco HA (2008) Adaptation to climate change—needs and opportunities in Southeast Asia. ASEAN Econ Bull 25(1):7–19

    Article  Google Scholar 

  • Friedl MA et al (2010) MODIS Collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens Environ 114:168–182

    Article  Google Scholar 

  • Funk C et al (2015) The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci Data 2:150066

    Article  Google Scholar 

  • Godin R (2014) Joint Polar Satellite System (JPSS) VIIRS Surface Type Algorithm Theoretical Basis Document (ATBD). Algorithm Theoretical Basis Document (last access: 3 January 2017). https://www.star.nesdis.noaa.gov/jpss/documents/ATBD/D0001-M01-S01-024_JPSS_ATBD_VIIRSSurface-Type_A.pdf

    Google Scholar 

  • Haddeland I, Lettenmaier DP, Skaugen T (2006a) Effects of irrigation on the water and energy balances of the Colorado and Mekong river basin. J Hydrol 324:210–223

    Article  Google Scholar 

  • Haddeland I, Skaugen T, Lettenmaier DP (2006b) Anthropogenic impacts on continental surface water fluxes. Geophys Res Lett 33(8):L08406

    Article  Google Scholar 

  • Hijmans RJ et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Ito A (2007) Simulated impacts of climate and land-cover change on soil erosion and implications for the carbon cycle, 1901 to 2100. Geophys Res Lett 34:L09403

    Google Scholar 

  • Justice CO et al (2013) Land and cryosphere products from Suomi NPP VIIRS: overview and status. Geophys Res Lett 118:9753–9765

    Google Scholar 

  • Keskinen M et al (2010) Climate change and water resources in the Lower Mekong River Basin: putting adaptation into the context. J Water Clim Chang 1:103–117

    Article  Google Scholar 

  • Kibria KN, Ahiablame L, Hay C, Djira G (2016) Streamflow trends and responses to climate variability and land cover change in South Dakota. Hydrology 3

    Google Scholar 

  • Kingston DG, Thompson JR, Kite G (2011) Uncertainty in climate change projections of discharge for the Mekong River Basin. Hydrol Earth Syst Sci 15:1459–1471

    Article  Google Scholar 

  • Kite G (2001) Modelling the Mekong: hydrological simulation for environmental impact studies. J Hydrol 253:1–13

    Article  Google Scholar 

  • Kityuttachai K, Heng S, Sou V (2016) Land cover map of the Lower Mekong Basin, MRC Technical Paper No. 59, Information and Knowledge Management Programme. Mekong River Commission, Phnom Penh, Cambodia

    Google Scholar 

  • Kummu M, Sarkkula J (2008) Impact of the Mekong river flow alteration on the Tonle Sap flood pulse. Ambio 37(3):185–192

    Article  Google Scholar 

  • Kummu M, Sarkkula J, Koponen J, Nikula J (2006) Ecosystem management of Tonle Sap Lake: integrated modelling approach. Int J Water Resour Dev 22(3):497–519

    Article  Google Scholar 

  • Lamberts D (2008) Little impact, much damage: the consequences of Mekong River flow alterations for the Tonle Sap ecosystem. In: Kummu M, Keskinen M, Varis O (eds) Modern myths of the Mekong—a critical review of water and development concepts, principles and policies. Water & Development Publications—Helsinki University of Technology, Espoo, pp 3–18

    Google Scholar 

  • Lauri H et al (2012) Future changes in Mekong River hydrology: impact of climate change and reservoir operation on discharge. Hydrol Earth Syst Sci 16:4603–4619

    Article  Google Scholar 

  • Liang X, Lettenmaier DP, Wood EF, Burges SJ (1994) A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J Geophys Res 99:14415–14428

    Article  Google Scholar 

  • Liu M, Adam JC, Hanlet AF (2013a) Spatial-temporal variations of evapotranspiration and runoff/precipitation ratios responding to the changing climate in the Pacific Northwest during 1921-2006. J Geophys Res Atmos 118:380–394. https://doi.org/10.1029/2012JD018400

    Article  Google Scholar 

  • Liu X, Liu W, Xia J (2013b) Comparison of the streamflow sensitivity to aridity index between the Danjiangkou Reservoir basin and Miyun Reservoir basin, China. Theor Appl Climatol 111:683–691. https://doi.org/10.1007/s00704-012-0701-3

    Article  Google Scholar 

  • Liu Y, Li Y, Li S, Motesharrei S (2015) Spatial and temporal patterns of global NDVI trends: correlations with climate and human factors. Remote Sens 7:13233–13250. https://doi.org/10.3390/rs71013233

    Article  Google Scholar 

  • Lohmann D, Nolte-Holube R, Raschke E (1996) A large-scale horizontal routing model to be coupled to land surface parametrization schemes. Tellus 48:708–721

    Article  Google Scholar 

  • Lohmann D, Raschke E, Nijssen B, Lettenmaier DP (1998) Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model. Hydrol Sci J 43:131–141

    Article  Google Scholar 

  • Loveland TR, Belward AS (1997) The IGBP-DIS global 1 km land cover data set, DISCover: first results. Int J Remote Sens 18:3289–3295

    Article  Google Scholar 

  • LP DAAC (Land Processes Distributed Active Archive Center) (2010) MCD12Q1. V051, NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and Science (EROS) Center, Sioux Falls. https://lpdaac.usgs.gov. Accessed 14 Feb 2016

  • Matheussen B et al (2000) Effects of land cover change on streamflow in the interior Columbia basin. Hydrol Process 14:867–885

    Article  Google Scholar 

  • Milne R, Jallow BP (2003) Basis for consistent representation of land areas. In: Apps M, Miguez JD (eds) IPCC good practice guidance for LULUCF. pp 2.1–2.29

    Google Scholar 

  • Moriasi DN et al (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50:885–900

    Article  Google Scholar 

  • MRC (Mekong River Commission) (2010) State of the Basin Report: 2010. Mekong River Commission, Vientiane Lao PDR

    Google Scholar 

  • MRC (Mekong River Commission) (2011) Hydrological database. Mekong River Commission, Vientiane Lao PDR

    Google Scholar 

  • Nachergaele F, van Vilthuizen H, Verelst L, Wiberg D (2012) Harmonized World Soil Database. Technical Document, United Nations FAO

    Google Scholar 

  • Nagaraj MK, Yaragal SC (2008) Sensitivity of land cover parameter in runoff estimation using GIS. ISH J Hydraul Eng 14:41–51. https://doi.org/10.1080/09715010.2008.10514891

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—discussion of principles. J Hydrol 10:282–290

    Article  Google Scholar 

  • Nijssen B, O’Donnell GM, Hamlet AF, LettenMaier DP (2001a) Hydrologic sensitivity of global rivers to climate change. Clim Chang 50:143–175

    Article  Google Scholar 

  • Nijssen B, Schnur R, Lettenmaier DP (2001b) Global retrospective estimation of soil moisture using the variable infiltration capacity land surface model, 1980–93. J Clim 14:1790–1808

    Article  Google Scholar 

  • Nijssen B et al (2001c) Predicting the discharge of global rivers. J Clim 14:3307–3323

    Article  Google Scholar 

  • NOAA CLASS (National Oceanic and Atmospheric Administration Comprehensive Large Array-Data Stewardship System) (2013) VIIRS Surface Type EDR (VSTYO), NOAA CLASS, NOAA Center for Satellite Applications and Research, College Park, Maryland, https://www.class.ncdc.noaa.gov. Accessed 18 July 2016

    Google Scholar 

  • Olofsson P et al (2014) Good practices for estimating area and assessing accuracy of land change. Remote Sens Environ 148:42–57. https://doi.org/10.1016/j.rse.2014.02.015

    Article  Google Scholar 

  • Parajka J et al (2009) Comparative analysis of the seasonality of hydrological characteristics in Slovakia and Austria. Hydrol Sci J 54:456–473

    Article  Google Scholar 

  • Pech S, Sunada K (2008) Population growth and natural-resources pressure in the Mekong River Basin. Ambio 37:219–224

    Article  Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Koppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644. https://doi.org/10.5194/hess-11-1633-2007

    Article  Google Scholar 

  • Pontius RG Jr, Schneider LC (2001) Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agric Ecosyst Environ 85:239–248

    Article  Google Scholar 

  • Prathumratana L, Sthiannopkao S, Kim KW (2008) The relationship of climate and hydrologic parameters to surface water quality in the lower Mekong River. Environ Int 34:860–866. https://doi.org/10.1016/j.envint.2007.10.011

    Article  Google Scholar 

  • Ratnam J et al (2011) When is a ‘forest’ a savanna, and why does it matter? Glob Ecol Biogeogr 20:1–8. https://doi.org/10.1111/j.1466-8238.2010.00634.x

    Article  Google Scholar 

  • Romanic D, Curic M, Jovicic I, Lompar M (2015) Long-term trends of the ‘Koshava’ wind during the period 1949-2010. Int J Climatol 35:288–302. https://doi.org/10.1002/joc.3981

    Article  Google Scholar 

  • Sakamoto T et al (2006) Spatio-temporal distribution of rice phenology and cropping systems in the Mekong Delta with special reference to the seasonal water flow of the Mekong and Bassac rivers. Remote Sens Environ 100:1–16

    Article  Google Scholar 

  • Schaake JC (1990) From climate to flow. In: Waggoner PE (ed) Climate change and U.S. water resources. Wiley, New York, pp 177–206

    Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63:1379–1389

    Article  Google Scholar 

  • Stehman SV (1996) Estimating the Kappa coefficient and its variance under stratified random sampling. Photogramm Eng Remote Sens 62:401–407

    Google Scholar 

  • Strahler A et al (1999) MODIS land cover product algorithm theoretical basis document (ATBD) Version 5.0. Technical Document, NASA. https://modis.gsfc.nasa.gov/data/atbd/atbd_mod12.pdf

  • Tatsumi K, Yamashiki Y (2015) Effect of irrigation water withdrawals on water and energy balance in the Mekong River Basin using an improved VIC land surface model with fewer calibration parameters. Agric Water Manag 159:92–106. https://doi.org/10.1016/j.agwat.2015.05.011

    Article  Google Scholar 

  • Thompson JR, Green AJ, Kingston DG, Gosling SN (2013) Assessment of uncertainty in river flow projections for the Mekong River using multiple GCMs and hydrological models. J Hydrol 486:1–30. https://doi.org/10.1016/j.jhydrol.2013.01.029

    Article  Google Scholar 

  • Tote C et al (2015) Evaluation of satellite rainfall estimates for drought and flood monitoring in Mozambique. Remote Sens 7:1758–1776. https://doi.org/10.3390/rs70201758

    Article  Google Scholar 

  • Trenberth KE, Fasullo JT, Mackaro J (2011) Atmospheric moisture transports from Ocean to land and global energy flows in reanalyses. J Clim 24:4907–4924. https://doi.org/10.1175/2011JCLI1471.1

    Article  Google Scholar 

  • Verburg PH et al (2002) Modeling the spatial dynamics of regional land use: the CLUE-S model. Environ Manag 30:391–405. https://doi.org/10.1007/s00267-002-2630-x

    Article  Google Scholar 

  • Wijesekara GN et al (2012) Assessing the impact of future land-use changes on hydrological processes in the Elbow River watershed in southern Alberta, Canada. J Hydrol 412:220–232

    Article  Google Scholar 

  • Zheng J, Yu X, Deng W, Wang H, Wang Y (2013) Sensitivity of land-use change to streamflow in Chaobai river basin. J Hydrol Eng 18:457–464. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000669

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Mekong River Commission for supplying the observed discharge data used in this study. A special thanks goes to Faisal Hossain for his assistance with setting up the hydrologic model. The authors are grateful to Dan Irwin, Eric Anderson, Africa Flores, Lee Ellenburg, Larry Carey, Maury Estes, and others for their support and valuable comments. This work was funded through the NASA-SERVIR program part of the Capacity Building program of NASA Applied Sciences as part of K.N.M. graduate work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kel N. Markert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Markert, K.N., Griffin, R.E., Limaye, A.S., McNider, R.T. (2018). Spatial Modeling of Land Cover/Land Use Change and Its Effects on Hydrology Within the Lower Mekong Basin. In: Vadrevu, K., Ohara, T., Justice, C. (eds) Land-Atmospheric Research Applications in South and Southeast Asia. Springer Remote Sensing/Photogrammetry. Springer, Cham. https://doi.org/10.1007/978-3-319-67474-2_29

Download citation

Publish with us

Policies and ethics