Satellite Remote Sensing of Aerosols and Gaseous Pollution over Pakistan

  • Salman Tariq
  • Zia Ul-Haq
Part of the Springer Remote Sensing/Photogrammetry book series (SPRINGERREMO)


The trace gases–aerosols–climate interaction is an important subject regarding climate change, air quality studies, and modeling. This study focuses on the spatiotemporal variability, trends, and seasonality of aerosols and important trace gases such as NO2, CH4, O3, and CO over Pakistan using satellite remote sensing. In the present work, to assess the total aerosol burden, we have analyzed the Aqua-MODIS derived deep blue aerosol optical depth (AOD) at 550 nm for the period July 2002 to June 2015. We have also compared AOD from Aqua with that of Terra and MISR. High correlation (R = 0.832) was observed between Aqua-AOD and Terra-AOD while relatively low correlation (0.666) was found between Aqua-AOD and MISR-AOD. The AOD starts to increase from February and becomes maximum (0.55) in July and then decreases afterwards. We have also discussed seasonal and annual mean AOD derived from Aqua-MODIS over six megacities of Pakistan. Annual mean value of tropospheric NO2 column derived from OMI (Ozone Monitoring Instrument) is found to be 1.187 ± 0.018 × 1015 molecules/cm2 during 2005–2015. NO2 column exhibits two peaks, i.e., primary peak in June (1.325 ± 0.079 × 1015 molecules/cm2) and secondary peak in December (1.258 ± 0.099 × 1015 molecules/cm2). Atmospheric Infrared Sounder (AIRS) observations reveal an annual averaged value of CO to be 123.165 ± 6.67 (ppbv). AIRS data show large spatial and temporal variations of lower-tropospheric O3 retrieved at 850 hPa. Yearly time and space averaged value of O3 is 42.27 ± 0.35 ppbv with increasing trend of 0.17% per year. SCIAMACHY data show that total column of CH4 is elevating with the rate of 0.41% per year with an annual mean value of 1787 ± 22 ppbv during the study period.


Aerosols GHG’s Satellite data Variations 



We are thankful to MODIS, MISR, AIRS, SCIAMACHY and OMI science teams and NASA for providing the data used in this study.


  1. Alam K, Qureshi S, Blaschke T (2011) Monitoring spatio-temporal aerosol patterns over Pakistan based on MODIS, TOMS and MISR satellite data and a HYSPLIT model. Atmos Environ 45:4641–4651CrossRefGoogle Scholar
  2. Alfaro SC, Gomes L (2001) Modeling mineral aerosol production by wind erosion: emission intensities and aerosol size distributions in source areas. J Geophys Res Atmos 106(D16):18075–18084CrossRefGoogle Scholar
  3. Ali M, Tariq S, Mahmood K, Daud A, Batool A, Haq Z (2014) A study of aerosol properties over Lahore (Pakistan) by using AERONET data. Asia-Pac J Atmos Sci 50:153–162. CrossRefGoogle Scholar
  4. Badarinath KVS, Kharol SK, Latha KM, Chand TR, Prasad VK, Jyothsna AN, Samatha K (2007) Multiyear ground-based and satellite observations of aerosol properties over a tropical urban area in India. Atmos Sci Lett 8(1):7–13CrossRefGoogle Scholar
  5. Badarinath KVS, Kharol SK, Krishna Prasad V, Kaskaoutis DG, Kambezidis HD (2008) Variation in aerosol properties over Hyderabad, India during intense cyclonic conditions. Int J Remote Sens 29(15):4575–4597CrossRefGoogle Scholar
  6. Badarinath KVS, Shailesh KK, Anu RS, Krishna VP (2009a) Analysis of aerosol and carbon monoxide characteristics over Arabian Sea during crop residue burning period in the Indo-Gangetic plains using multi-satellite remote sensing datasets. J Atmos Sol Terr Phys 71:1267–1276CrossRefGoogle Scholar
  7. Badarinath KVS, Sharma AR, Kharol SK, Prasad VK (2009b) Variations in CO, O3 and black carbon aerosol mass concentrations associated with planetary boundary layer (PBL) over tropical urban environment in India. J Atmos Chem 62(1):73–86CrossRefGoogle Scholar
  8. Barrero MA, Grimalt JO, Cantón L (2006) Prediction of daily ozone concentration maxima in urban atmosphere. Chemom Intel Lab Syst 80:67–76CrossRefGoogle Scholar
  9. Biswas S, Vadrevu KP, Lwin ZM, Lasko K, Justice CO (2015) Factors controlling vegetation fires in protected and non-protected areas of Myanmar. PLoS ONE 10(4):e0124346CrossRefGoogle Scholar
  10. Boersma KF, Jacob DJ, Trainic M, Rudich Y, DeSmedt I, Dirksen R, Eskes HJ (2009) Validation of urban NO2 concentrations and their diurnal and seasonal variations observed from the SCIAMACHY and OMI sensors using in situ surface measurements in Israeli cities. Atmos Chem Phys 9:3867–3879CrossRefGoogle Scholar
  11. Buchwitz M, de Beek R, Noel S, Burrows JP, Bovensmann H, Schneising O, Khlystova I, Bruns M, Bremer H, Bergamaschi P, Korner S, Heimann M (2006) Atmospheric carbon gases retrieved from SCIAMACHY by WFM-DOAS:version 0.5 CO and CH4 and impact of calibration improvements on CO2 retrieval. Atmos Chem Phys 6:2727–2751CrossRefGoogle Scholar
  12. Camalier L, Cox W, Dolwick P (2007) The effects of meteorology on ozone in urban areas and their use in assessing ozone trends. Atmos Environ 41:7127–7137CrossRefGoogle Scholar
  13. Cheng Y, Wiedensohler A, Eichler H, Heintzenberg J, Tesche M, Ansmann A, Wendisch M, Su H, Althausen D, Herrmann H (2008) Relative humidity dependence of aerosol optical properties and direct radiative forcing in the surface boundary layer at Xinken in Pearl River Delta of China: an observation based numerical study. Atmos Environ 42:6373–6397CrossRefGoogle Scholar
  14. Deeter MN, Edwards DP, Gille JC, Drummond JR (2007) Sensitivity of MOPITT observations to carbon monoxide in the lower troposphere. J Geophys Res 112:D24306. CrossRefGoogle Scholar
  15. Dlugokencky EJ, Dutton EG, Novelli PC, Tans PP, Masarie KA, Lantz KO, Madronich S (1996) Changes in CH4 and CO growth rates after the eruption of Mt. Pinatubo and their link with changes in tropical tropospheric UV flux. Geophys Res Lett 23.
  16. Donald JW, Katharine H (2002) Atmospheric methane and global change. Earth Sci Rev 57:177–210CrossRefGoogle Scholar
  17. EDGAR (Emission Database for Global Atmospheric Research) (2011) European Commission, release version 4.1. Accessed 2015
  18. Elminir HK (2005) Dependence of urban air pollutants on meteorology. Sci Total Environ 350:225–237CrossRefGoogle Scholar
  19. Emmons LK, Deeter MN, Gille JC, Edwards DP, Attié J-L, Warner J, Ziskin D, Francis G, Khattatov B, Yudin V, Lamarque J-F, Ho S-P, Mao D, Chen JS, Drummond J, Novelli P, Sachse G, Coffey MT, Hannigan JW, Gerbig C, Kawakami S, Kondo Y, Takegawa N, Schlager H, Baehr J, Ziereis H (2004) Validation of Measurements of Pollution in the Troposphere (MOPITT) CO retrievals with aircraft in situ profiles. J Geophys Res 109:D03309. CrossRefGoogle Scholar
  20. Eskes HJ, Boersma KF (2003) Averaging kernels for DOAS total–column satellite retrievals. Atmos Chem Phys 3:1285–1291CrossRefGoogle Scholar
  21. Frankenberg C, Meirink J, van Weele M, Platt U, Wagner T (2005) Assessing methane emissions from global space-borne observations. Science 308(5724):1010–1014. CrossRefGoogle Scholar
  22. Frankenberg C, Meirink J, Bergamaschi P, Goede A, Heimann M, Korner S et al (2006) Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: analysis of the years 2003 and 2004. J Geophys Res Atmos 111(D7):D07303. CrossRefGoogle Scholar
  23. Frankenberg C, Aben I, Bergamaschi P, Dlugokencky EJ, van Hees R, Houweling S et al (2011) Global column-averaged methane mixing ratios from 2003 to 2009 as derived from SCIAMACHY: Trends and variability. J Geophys Res Atmos 116:D04302. CrossRefGoogle Scholar
  24. George M, Clerbaux C, Hurtmans D, Turquety S, Coheur P-F, Pommier M, Hadji-Lazaro J, Edwards DP, Worden H, Luo M, Rinsland C, McMillan W (2009) Carbon monoxide distributions from the IASI/METOP mission: evaluation with other space-borne remote sensors. Atmos Chem Phys 9:8317–8330. CrossRefGoogle Scholar
  25. Gettelman A, Holton JR, Rosenlof KH (1997) Mass fluxes of O3, CH4, N2O and CF2Cl2 in the lower atmosphere calculated from observational data. J Geophys Res 102:19149–19159CrossRefGoogle Scholar
  26. Ghude SD, Fadnavis S, Beig G, Polade SD, van der A RJ (2008) Detection of surface emission hot spots, trends, and seasonal cycle from satellite-retrieved NO2 over India. J Geophys Res 113:D20305. CrossRefGoogle Scholar
  27. Ghude SD, Van der RJA, Beig G, Fadnavis S, Polade SD (2009) Satellite derived trends in NO2 over the major global hotspot regions during the past decade and their inter-comparison. Environ Pollut 157:1873–1878CrossRefGoogle Scholar
  28. Ghude SD, Beig G, Kulkarni PS, Kanawade VP, Fadnavis S, Remedios JJ, Kulkarni SH (2011) Regional CO pollution over the Indian subcontinent and various transport pathways as observed by MOPITT. Int J Remote Sens 32(21):6133–6148. CrossRefGoogle Scholar
  29. Ginoux P, Prospero JM, Gill TE, Hsu NC, Zhao M (2012) Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev Geophys 50:RG3005. CrossRefGoogle Scholar
  30. Girach IA, Nair PR (2014) Carbon monoxide over Indian region as observed by MOPITT. Atmos Environ 99:599–609CrossRefGoogle Scholar
  31. Goudie AS (2013) Desert dust and human health disorders. Environ Int 63:101–113CrossRefGoogle Scholar
  32. Hayasaka H, Noguchi I, Putra EI, Yulianti N, Vadrevu K (2014) Peat-fire-related air pollution in Central Kalimantan, Indonesia. Environ Pollut 195:257–266CrossRefGoogle Scholar
  33. Hayashida S, Ono A, Yoshizaki S, Frankenberg C, Takeuchi W (2013) Methane concentrations over Monsoon Asia as observed by SCIAMACHY: signals of methane emission from rice cultivation. Remote Sens Environ 139:246–256CrossRefGoogle Scholar
  34. Hayn M, Beirle S, Hamprecht FA, Platt U, Menze BH, Wagner T (2009) Analysing spatio–temporal patterns of the global NO2–distribution retrieved from GOME satellite observations using a generalized additive model. Atmos Chem Phys 9:6459–6477CrossRefGoogle Scholar
  35. Howarth R, Santoro R, Ingraffea A (2011) Methane and the greenhouse-gas footprint of natural gas from shale formations. Clim Change 106(4):679–690CrossRefGoogle Scholar
  36. Intergovernmental Panel on Climate Change (IPCC) (1996) Climate change 1995: the science of climate change. Summary for policy makers. Cambridge University Press, Cambridge, p 56Google Scholar
  37. IPCC (1996) Intergovernmental Panel on Climate Change. In: Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (eds) Climate change 1995. The science of climate change. Cambridge University Press, Cambridge, p 572Google Scholar
  38. Jae NL, Wu DL, Ruzmaikin A (2013) Interannual variations of MLS carbon monoxide induced by solar cycle. J Atmos Sol Terr Phys 102:99–104CrossRefGoogle Scholar
  39. Jiang X, Liu Y, Yu B, Jiang M (2007) Comparison of MISR aerosol optical thickness with AERONET measurements in Beijing metropolitan area. Remote Sens Environ 107:45–53CrossRefGoogle Scholar
  40. Kahn R, Gaitley B, Martonchik J, Diner DJ, Crean K, Holben BN (2005) MISR global aerosol optical depth validation based on two years of coincident AERONET observations. J Geophys Res 110:D10S04. CrossRefGoogle Scholar
  41. Kahn RA, Garay MJ, Nelson DL, Yau KK, Bull MA, Gaitley BJ, Martonchik JV, Levy RC (2007) Satellite-derived aerosol optical depth over dark water from MISR and MODIS: comparisons with AERONET and implications for climatological studies. J Geophys Res 112:D18205. CrossRefGoogle Scholar
  42. Kant Y, Ghosh AB, Sharma MC, Gupta PK, Prasad VK, Badarinath KVS, Mitra AP (2000a) Studies on aerosol optical depth in biomass burning areas using satellite and ground-based observations. Infrared Phys Technol 41(1):21–28CrossRefGoogle Scholar
  43. Kant Y, Prasad VK, Badarinath KVS (2000b) Algorithm for detection of active fire zones using NOAA AVHRR data. Infrared Phys Technol 41(1):29–34CrossRefGoogle Scholar
  44. Kaskaoutis DG, Rashki A, Houssos EE, Goto D, Nastos PT (2014) Extremely high aerosol loading over Arabian Sea during June 2008: the specific role of the atmospheric dynamics and Sistan dust storms. Atmos Environ 94:374–384CrossRefGoogle Scholar
  45. Kaufman YJ, Tanre D, Remer LA, Vermote E, Chu A, Holben B (1997) Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J Geophys Res Atmos (1984-2012) 102:17051–17067CrossRefGoogle Scholar
  46. King MD, Menzel WP, Kaufman YJ, Tanre D, Gao BC, Platnick S, Ackerman SA, Remer LA, Pincus R, Hubanks PA (2003) Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Trans Geosci Remote Sens 41:442–458CrossRefGoogle Scholar
  47. Kumar KR, Yin Y, Sivakumar V, Kang N, Yu X, Diao Y, Adesina AJ, Reddy RR (2015) Aerosol climatology and discrimination of aerosol types retrieved from MODIS, MISR, and OMI over Durban (29.88°S, 31.02°E), South Africa. Atmos Environ 117:9–18CrossRefGoogle Scholar
  48. Lamsal LN, Martin RV, van Donkelaar A, Celarier EA, Bucsela EJ, Boersma KF, Dirksen R, Luo C, Wang Y (2010) Indirect validation of tropospheric nitrogen dioxide retrieved from the OMI satellite instrument: Insight into the seasonal variation of nitrogen oxides at northern midlatitudes. J Geophys Res Atmos 115:art no D05302CrossRefGoogle Scholar
  49. Le TH, Nguyen TNT, Lasko K, Ilavajhala S, Vadrevu KP, Justice C (2014) Vegetation fires and air pollution in Vietnam. Environ Pollut 195:267–275CrossRefGoogle Scholar
  50. Léon JF, Legrand M (2003) Mineral dust sources in the surroundings of the north Indian Ocean. Geophys Res Lett 30(6):1309. CrossRefGoogle Scholar
  51. Levelt PF, Hilsenrath E, Leppelmeier GW, van den Oord GHJ, Bhartia PK, Tamminen J, de Haan JF, Veefkind JP (2006a) Science objectives of the Ozone Monitoring Instrument. IEEE Trans Geosci Remote Sens 44:1199–1208CrossRefGoogle Scholar
  52. Levelt PF, Van den Oord GHJ, Dobber MR, Malkki A, Visser H, de Vries J, Stammes P, Lundell JOV, Saari H (2006b) The Ozone Monitoring Instrument. IEEE Trans Geosci Remote Sens 44:1093–1101. CrossRefGoogle Scholar
  53. Levy RC, Remer LA, Mattoo S, Vermote EF, Kaufman YJ (2007) Second generation operational algorithm: retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. J Geophys Res Atmos (1984-2012) 112Google Scholar
  54. Liji MD, Prabha RN (2013) Tropospheric column O3 and NO2 over the Indian region observed by Ozone Monitoring Instrument (OMI): seasonal changes and long-term trends. Atmos Environ 65:25–39CrossRefGoogle Scholar
  55. Lyma JL, Jensen RJ (2001) Chemical reactions occurring during direct solar reduction of CO2. Sci Total Environ 277:7–14CrossRefGoogle Scholar
  56. Middleton NJ (1986) Dust storms in the Middle East. J Arid Environ 10:83–96Google Scholar
  57. Nishanth T, Satheesh KMK (2011) Increasing trends of tropospheric ozone and NO2 at the prominent hot spots along the coastal belt of the Arabian Sea in Indian Subcontinent. Int J Environ Sci 1(5):860–870Google Scholar
  58. O’Brien MD, Klapperick RL, Bell C (1993) The United States of America as represented by the Department of Energy. Aerosol can waste disposal device. U.S. Patent 5,271,437Google Scholar
  59. Ocak S, Turalioglu FS (2008) Effect of meteorology on the atmospheric concentrations of traffic-related pollutants in Erzurum, Turkey. J Int Environ Appl Sci 3(5):325–335Google Scholar
  60. Pal C (2010) Variability of total ozone over India and its adjoining regions during 1997-2008. Atmos Environ 44:1927–1936CrossRefGoogle Scholar
  61. Prasad AK, Singh RP (2007) Comparison of MISR-MODIS aerosol optical depth over the Indo-Gangetic basin during the winter and summer seasons (2000-2005). Remote Sens Environ 107:109–119CrossRefGoogle Scholar
  62. Prasad VK, Kant Y, Gupta PK, Elvidge C, Badarinath KVS (2002) Biomass burning and related trace gas emissions from tropical dry deciduous forests of India: a study using DMSP-OLS data and ground-based measurements. Int J Remote Sens 23(14):2837–2851CrossRefGoogle Scholar
  63. Prasad VK, Lata M, Badarinath KVS (2003) Trace gas emissions from biomass burning from northeast region in India—estimates from satellite remote sensing data and GIS. Environmentalist 23(3):229–236CrossRefGoogle Scholar
  64. Prasad VK, Badarinath KVS, Eaturu A (2008) Effects of precipitation, temperature and topographic parameters on evergreen vegetation greenery in the Western Ghats, India. Int J Climatol 28(13):1807–1819CrossRefGoogle Scholar
  65. Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE (2002) Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev Geophys 40(1):1002. CrossRefGoogle Scholar
  66. Ramachandran S, Kedia S (2013) Aerosol optical properties over South Asia from ground-based observations and remote sensing: a review. Climate 1:84–119CrossRefGoogle Scholar
  67. Ravindra K, Mor S, Kamyotra JS, Kaushik CP (2003) Variation in spatial pattern of criteria air pollutants before and during initial rain of monsoon. Environ Monit Assess 87(2):145–153CrossRefGoogle Scholar
  68. Remer LA, Kaufman YJ, Tanre D, Matto S, Chu DA, Martins JV et al (2005) The MODIS aerosol algorithm, products, and validation. J Atmos Sci 62:947–973CrossRefGoogle Scholar
  69. Richter A, Burrows JP, N β H, Granier C, Niemeier U (2005) Increase in tropospheric nitrogen dioxide over China observed from space. Nature 437:129–132CrossRefGoogle Scholar
  70. Rosenfeld D (2000) Suppression of rain and snow by urban and industrial air pollution. Science 287(5459):1793–1796CrossRefGoogle Scholar
  71. Ruzmaikin A, Lee JN, Wu DL (2014) Patterns of carbon monoxide in the middle atmosphere and effects of solar variability. Adv Space Res 54:320–326CrossRefGoogle Scholar
  72. Sahu LK, Varun S, Kajino M, Nedelec P (2013) Variability in tropospheric carbon monoxide over an urban site in Southeast Asia. Atmos Environ 68:243–255CrossRefGoogle Scholar
  73. Schneising O, Buchwitz M, Burrows JP, Bovensmann H, Bergamaschi P, Peters W (2009) Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite–part 2: methane. Atmos Chem Phys 9:443–465. CrossRefGoogle Scholar
  74. Shan WP, Yin YQ, Zhang JD, Ji X, Deng XY (2009) Surface ozone and meteorological condition in a single year at an urban site in central-eastern China. Environ Monit Assess 151:127–141CrossRefGoogle Scholar
  75. Streets DG, Timothy C, Carmichael GR, de Benjamin F, Dickerson RR, Duncan BN, Edwards DP, Haynes JA, Henze DK, Houyoux MR, Jacob DJ, Krotkov NA, Lamsal LN, Yang L, Zifeng L, Martin RV, Pfister GG, Pinderm RW, Salawitch RJ, Wecht KJ (2013) Emissions estimation from satellite retrievals: a review of current capability. Atmos Environ 77:1011–1042CrossRefGoogle Scholar
  76. Tan KC, Lim HS, MatJafri MZ (2014) Analysis of total column ozone in Peninsular Malaysia retrieved from SCIAMACHY. Atmos Pollut Res 5:42–51CrossRefGoogle Scholar
  77. Tanre D, Kaufman Y, Herman M, Mattoo S (1997) Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances. J Geophys Res Atmos (1984-2012) 102:16971–16988CrossRefGoogle Scholar
  78. Tariq S, Ali M (2015) Spatio-temporal distribution of absorbing aerosols over Pakistan retrieved from OMI Onboard Aura Satellite. Atmos Pollut Res.
  79. Tariq S, ul-Haq Z, Ali M (2015) Analysis of optical and physical properties of aerosols during crop residue burning event of October 2010 over Lahore, Pakistan. Atmos Pollut Res 969–978.
  80. Tariq S, ul-Haq Z, Ali M (2016) Satellite and ground-based remote sensing of aerosols during intense haze event of October 2013 over Lahore, Pakistan. Asia-Pacific J Atmos Sci.
  81. Tu J, Xia Z, Wang H, Li W (2007) Temporal variations in surface ozone and its precursors and meteorological effects at an urban site in China. Atmos Res 85:310–337CrossRefGoogle Scholar
  82. ul-Haq Z, Tariq S, Ali M, Mahmood K, Batool SA, Rana AD (2014) A study of tropospheric NO2 variability over Pakistan using OMI data. Atmos Pollut Res 5(4):709–720. CrossRefGoogle Scholar
  83. ul-Haq Z, Rana AD, Ali M, Mahmood K, Tariq S, Qayyum Z (2015a) Carbon monoxide (CO) emissions and its tropospheric variability over Pakistan using satellite-sensed data. Adv Space Res 56:583–595. CrossRefGoogle Scholar
  84. ul-Haq Z, Tariq S, Rana AD, Ali M, Mahmood K, Shahid P (2015b) Satellite remote sensing of total ozone column (TOC) over Pakistan and neighbouring regions. Int J Remote Sens 36(4):1038–1054. CrossRefGoogle Scholar
  85. ul-Haq Z, Tariq S, Ali M (2015c) Tropospheric NO2 trends over South Asia during the last decade (2004-2014) using OMI data. Adv Meteorol (Special Issue: Satellite Observation of Atmospheric Compositions for Air Quality and Climate Study (SOAC)) Article ID 959284, 18p.
  86. ul-Haq Z, Tariq S, Ali M (2015d) Atmospheric variability of methane over Pakistan, Afghanistan and adjoining areas using retrievals from SCIAMACHY/ENVISAT. J Atmos Sol Terr Phys 135:161–173. CrossRefGoogle Scholar
  87. Uno IH, Ohara T, Yamaji K, Kurokawa JI, Katayama M, Wang Z, Noguchi K, Hayashida S, Richter A, Burrows JP (2007) Systematic analysis of interannual and seasonal variations of model-simulated tropospheric NO2 in Asia and comparison with GOME-satellite data. Atmos Chem Phys 7:1671–1681CrossRefGoogle Scholar
  88. Vadrevu KP (2008) Analysis of fire events and controlling factors in eastern India using spatial scan and multivariate statistics. Geogr Ann Ser B 90(4):315–328CrossRefGoogle Scholar
  89. Vadrevu KP, Justice CO (2011) Vegetation fires in the Asian region: satellite observational needs and priorities. Glob Environ Res 15(1):65–76Google Scholar
  90. Vadrevu KP, Eaturu A, Badarinath KV (2006) Spatial distribution of forest fires and controlling factors in Andhra Pradesh, India using spot satellite datasets. Environ Monit Assess 123(1):75–96CrossRefGoogle Scholar
  91. Vadrevu KP, Badarinath KVS, Anuradha E (2008) Spatial patterns in vegetation fires in the Indian region. Environ Monit Assess 147(1–3):1–13CrossRefGoogle Scholar
  92. Vadrevu KP, Giglio L, Justice C (2013a) Satellite based analysis of fire–carbon monoxide relationships from forest and agricultural residue burning (2003–2011). Atmos Environ 64:179–191CrossRefGoogle Scholar
  93. Vadrevu KP, Csiszar I, Ellicott E, Giglio L, Badarinath KVS, Vermote E, Justice C (2013b) Hotspot analysis of vegetation fires and intensity in the Indian region. IEEE J Sel Top Appl Earth Obs Remote Sens 6(1):224–238CrossRefGoogle Scholar
  94. Vay SA, Choi Y, Vadrevu KP, Blake DR, Tyler SC, Wisthaler A, Hecobian A, Kondo Y, Diskin GS, Sachse GW, Woo JH (2011) Patterns of CO2 and radiocarbon across high northern latitudes during International Polar Year 2008. J Geophys Res Atmos 116:D14301CrossRefGoogle Scholar
  95. Wallace J, Kanaroglou P (2009) The sensitivity of OMI–derived nitrogen dioxide to boundary layer temperature inversions. Atmos Environ 43:3596–3604CrossRefGoogle Scholar
  96. Wang T, Geng A, Li X, Wang H, Wang Z, Qiufen L (2011) A prediction model of oil cracked gas resources and Its application in the gas pools of Feixianguan Formation in NE Sichuan Basin, SW China. J Geol Res 2011:592567. CrossRefGoogle Scholar
  97. Warner JX, Wei Z, Strow LL, Barnet CD, Sparling LC, Diskin G, Sachse G (2010) Improved agreement of airs tropospheric carbon monoxide products with other EOS sensors using optimal estimation retrievals. Atmos Chem Phys 10:9521–9533. CrossRefGoogle Scholar
  98. Worden HM, Deeter MN, Frankenberg C, George M, Nichitiu F, Worden J, Aben I, Bowman KW, Clerbaux C, Coheur PF, de Laat ATJ, Detweiler R, Drummond JR, Edwards DP, Gille JC, Hurtmans D, Luo M, Martınez-Alonso S, Massie S, Pfister G, Warner JX (2013) Decadal record of satellite carbon monoxide observations. Atmos Chem Phys 13:837–850CrossRefGoogle Scholar
  99. Xiao N, Shi T, Calder CA, Munroe DK, Berrett C, Wolfinbarger S, Li D (2009) Spatial characteristics of the difference between MISR and MODIS aerosol optical depth retrievals over mainland southeast Asia. Remote Sens Environ 113:1–9CrossRefGoogle Scholar
  100. Yipin Z, Dominik B, Christoph H, Stephan H, Johannes S (2012) Changes in OMI tropospheric NO2 columns over Europe from 2004 to 2009 and the influence of meteorological variability. Atmos Environ 46:482–495CrossRefGoogle Scholar
  101. Yoo J-M, Lee Y-R, Kim D, Jeong M-J, Stockwell WR, Kundu PK, Oh S-M, Shin D-B, Lee S-J (2014) New indices for wet scavenging of air pollutants (O3, CO, NO2, SO2, and PM10) by summertime rain. Atmos Environ 82:226–237CrossRefGoogle Scholar
  102. Yuan T, Remer LA, Pickering KE, Yu H (2011) Observational evidence of aerosol enhancement of lightning activity and convective invigoration. Geophys Res Lett 38(4):L04701CrossRefGoogle Scholar
  103. Zhang Y, Huixiang X (2012) The sources and sinks of carbon monoxide in the St. Lawrence Estuarine System. Deep-Sea Res II 81–84:114–123CrossRefGoogle Scholar
  104. Zyrichidou I, Koukouli ME, Balis DS, Kioutsioukis I, Poupkou A, Katragkou E, Melas D, Boersma KF, van Roozendael M (2013) Evaluation of high resolution simulated and OMI retrieved tropospheric NO2 column densities over Southeastern Europe. Atmos Res 122:55–66CrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  1. 1.Remote Sensing and GIS Group, Department of Space ScienceUniversity of the PunjabLahorePakistan

Personalised recommendations