Advertisement

Investigating the Aerosol Type and Spatial Distribution During Winter Fog Conditions over Indo-Gangetic Plains

  • Muhammad Fahim Khokhar
  • Naila Yasmin
Chapter
Part of the Springer Remote Sensing/Photogrammetry book series (SPRINGERREMO)

Abstract

The South Asian region in general and the Indo-Gangetic Plains (IGP) in particular hold about 1/6th of the world’s population is considered as one of the major hotspots of atmospheric pollution. Fog is a major meteorological phenomenon which can generate significant social and economic disruptions. Meteorological stations provide information about the fog episodes only on the basis of point observation. Continuous monitoring as well as a spatially coherent picture of fog distribution can only be possible through the complementary use of satellite imagery. This study focuses on winter fog episodes over South Asian region using the Moderate Resolution Image Spectrometer (MODIS) and OMI Aerosol Product in combination with Fire, nitrogen dioxide (NO2), sulphur dioxide (SO2), and carbon monoxide (CO) datasets. MOD04 level 2 Collection 6 data is used to study aerosol load. Spatial distribution and types of aerosols are characterized using aerosol type over land product from MODIS. UV Aerosol Absorbing Index (UVAAI) from ozone monitoring instrument was also used for aerosol characterization over South Asia. The MODIS-derived aerosol optical depth was validated with independent ground-based measurements from the AErosol RObotic NETwork (AERONET) stations across the Indo-Gangetic plains. A significant correlation between MODIS (AOD) and AERONET Station (AOD) data was identified. The objectives of the study were to map the spatial extent of aerosol and their types during special weather conditions like fog over IGP. Absorbing aerosols originating from biomass burning activities are predominant in IGP. The spatial and temporal correlations between AOD and tropospheric columns of NO2, SO2, and CO are used to infer information about source region and composition of aerosol particles in IGP region.

Keywords

AOD MODIS AERONET IGP Winter Fog Aerosol Absorbing Index 

References

  1. Ahrens CD (2012) Meteorology today: an introduction to weather, climate, and the environment. Cengage Learning, BostonGoogle Scholar
  2. Alam K, Iqbal MJ, Blaschke T, Qureshi S, Khan G (2010) Monitoring spatio-temporal variations in aerosols and aerosol–cloud interactions over Pakistan using MODIS data. Adv Space Res 46(9):1162–1176CrossRefGoogle Scholar
  3. Alam K, Trautmann T, Blaschke T, Majid H (2012) Aerosol optical and radiative properties during summer and winter seasons over Lahore and Karachi. Atmos Envir 50:234–245.  https://doi.org/10.1016/j.atmosenv.2011.12.027CrossRefGoogle Scholar
  4. Ali M, Tariq S, Mahmood K, Daud A, Batool A (2014) A study of aerosol properties over Lahore (Pakistan) by using AERONET data. Asia-Pacific J Atmos Sci 50(2):153–162CrossRefGoogle Scholar
  5. Aloysius M, Mohan M, Babu SS, Parameswaran K, Moorthy KK (2009) Validation of MODIS derived aerosol optical depth and an investigation on aerosol transport over the South East Arabian Sea during ARMEX-II. Ann Geophys 27:2285CrossRefGoogle Scholar
  6. Andreae MO (1995) Chapter 10 Climatic effects of changing atmospheric aerosol levels. In: Henderson-sellers A (ed) World survey of climatology, vol 16. Elsevier, Amsterdam, pp 347–398.  https://doi.org/10.1016/S0168-6321(06)80033-7CrossRefGoogle Scholar
  7. Aumann HH, Chahine MT, Gautier C, Goldberg MD, Kalnay E, LM MM, Revercomb H, Rosenkranz PW, Smith WL, Staelin DH (2003) AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems. IEEE Trans Geosci Remote Sens 41(2):253–264CrossRefGoogle Scholar
  8. Babu SS, Manoj MR, Moorthy KK, Gogoi MM, Nair VS, Kompalli SK, Satheesh SK, Niranjan K, Ramagopal K, Bhuyan PK, Singh D (2013) Trends in aerosol optical depth over Indian region: potential causes and impact indicators. J Geophys Res Atmos 118(20):11794–711806.  https://doi.org/10.1002/2013jd020507CrossRefGoogle Scholar
  9. Bovensmann H, Burrows J, Buchwitz M, Frerick J, Noël S, Rozanov V, Chance K, Goede A (1999) SCIAMACHY: mission objectives and measurement modes. J Atmos Sci 56(2):127–150CrossRefGoogle Scholar
  10. Brooks SD, Gonzales M, Farias R (2009) Using surface tension measurements to understand how pollution can influence cloud formation, fog, and precipitation. J Chem Educ 86(7):838.  https://doi.org/10.1021/ed086p838CrossRefGoogle Scholar
  11. Burrows SM, Hoose C, Pöschl U, Lawrence M (2013) Ice nuclei in marine air: biogenic particles or dust? Atmos Chem Phys 13(1):245–267CrossRefGoogle Scholar
  12. Bushahab A, Al Suwaidi A, Ghedira H, Mubarak K (2009) Fog forecasting, detection and monitoring in the UAE using SEVIRI-MSG data. In: 2009 IEEE International Geoscience and Remote Sensing symposium, IGARSS 2009, 12–17 July 2009, pp II-535–II-538.  https://doi.org/10.1109/igarss.2009.5418137
  13. Charlson RJ, Schwartz S, Hales J, Cess RD, Coakley JJ, Hansen J, Hofmann D (1992) Climate forcing by anthropogenic aerosols. Science 255(5043):423–430CrossRefGoogle Scholar
  14. Chu D, Kaufman Y, Ichoku C, Remer L, Tanré D, Holben B (2002) Validation of MODIS aerosol optical depth retrieval over land. Geophys Res Lett 29(12).  https://doi.org/10.1029/2001GL013205
  15. Chu DA, Kaufman Y, Zibordi G, Chern J, Mao J, Li C, Holben B (2003) Global monitoring of air pollution over land from the Earth Observing System-Terra Moderate Resolution Imaging Spectroradiometer (MODIS). J Geophys Res Atmos 108(D21)Google Scholar
  16. Crutzen PJ, Andreae MO (1990) Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science 250(4988):1669–1678CrossRefGoogle Scholar
  17. D’Almeida GA, Koepke P, Shettle EP (1991) Atmospheric aerosols: global climatology and radiative characteristics. A Deepak Publishing, HamptonGoogle Scholar
  18. De Graaf M, Stammes P, Torres O, Koelemeijer R (2005) Absorbing Aerosol Index: sensitivity analysis, application to GOME and comparison with TOMS. J Geophy Res Atmos 110(D1)Google Scholar
  19. De Leeuw G, Kinne S, Léon J-F, Pelon J, Rosenfeld D, Schaap M, Veefkind PJ, Veihelmann B, Winker DM, von Hoyningen-Huene W (2011) Retrieval of aerosol properties. In: The remote sensing of tropospheric composition from space. Springer, New York, pp 259–313CrossRefGoogle Scholar
  20. Dejmal K, Repal V (2010) Forecasting the formation of radiation fog. New Asp Fluid Mech Heat Transf Environ 283–286Google Scholar
  21. Devara P, Saha S, Raj PE, Sonbawne S, Dani K, Tiwari Y, Maheskumar R (2005) A four-year climatology of total column tropical urban aerosol, ozone and water vapor distributions over Pune, India. Aerosol Air Qual Res 5(1):103–114CrossRefGoogle Scholar
  22. Dey S, Tripathi SN, Singh RP, Holben B (2004) Influence of dust storms on the aerosol optical properties over the Indo-Gangetic basin. J Geophys Res Atmos 109(D20)Google Scholar
  23. Dimitris GK, Ramesh PS, Ritesh G, Manish S, Kosmopoulos PG, Tripathi SN (2012) Variability and trends of aerosol properties over Kanpur, northern India using AERONET data (2001–10). Environ Res Lett 7(2):024003CrossRefGoogle Scholar
  24. Eck TF, Holben BN, Reid JS, Dubovik O, Smirnov A, O’Neill NT, Slutsker I, Kinne S (1999) Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J Geophys Res Atmos 104(D24):31333–31349.  https://doi.org/10.1029/1999jd900923CrossRefGoogle Scholar
  25. ESoP - Economic Survey of Pakistan (2013) Economic survey of Pakistan 2012–2013. Ministry of Finance, Pakistan. Available at http://www.finance.gov.pk/survey_1213.html
  26. Fetzer E, McMillin LM, Tobin D, Aumann HH, Gunson MR, McMillan WW, Hagan DE, Hofstadter MD, Yoe J, Whiteman DN (2003) Airs/amsu/hsb validation. IEEE Trans Geosci Remote Sens 41(2):418–431CrossRefGoogle Scholar
  27. Ganguly D, Jayaraman A, Rajesh TA, Gadhavi H (2006) Wintertime aerosol properties during foggy and nonfoggy days over urban center Delhi and their implications for shortwave radiative forcing. J Geophys Res Atmos 111(D15).  https://doi.org/10.1029/2005jd007029
  28. Gautam R, Hsu NC, WKM L, Yasunari TJ (2013) Satellite observations of desert dust-induced Himalayan snow darkening. Geophys Res Lett 40(5):988–993.  https://doi.org/10.1002/grl.50226CrossRefGoogle Scholar
  29. Gautier C, Shiren Y, Hofstadter MD (2003) AIRS/Vis near IR instrument. IEEE Trans Geosci Remote Sens 41(2):330–342CrossRefGoogle Scholar
  30. Grey WM, North PR, Los SO, Mitchell RM (2006) Aerosol optical depth and land surface reflectance from multiangle AATSR measurements: global validation and intersensor comparisons. IEEE Trans Geosci Remote Sens 44(8):2184CrossRefGoogle Scholar
  31. Griggs M (1979) Satellite observations of atmospheric aerosols during the E0MET Cruise. J Atmos Sci 36(4):695–698CrossRefGoogle Scholar
  32. Guttikunda SK, Tang Y, Carmichael GR, Kurata G, Pan L, Streets DG, Woo J-H, Thongboonchoo N, Fried A (2005) Impacts of Asian megacity emissions on regional air quality during spring 2001. J Geophy Res Atmos 110(D20).  https://doi.org/10.1029/2004jd004921
  33. Haywood JM, Francis PN, Glew MD, Taylor JP (2001) Optical properties and direct radiative effect of Saharan dust: a case study of two Saharan dust outbreaks using aircraft data. J Geophys Res Atmos 106(D16):18417–18430.  https://doi.org/10.1029/2000jd900319CrossRefGoogle Scholar
  34. Higurashi A, Nakajima T (2002) Detection of aerosol types over the East China Sea near Japan from four-channel satellite data. Geophys Res Lett 29(17):17-1CrossRefGoogle Scholar
  35. Holben B, Setzer A, Eck T, Pereira A, Slutsker I (1996) Effect of dry-season biomass burning on Amazon basin aerosol concentrations and optical properties, 1992–1994. J Geophys Res Atmos 101(D14):19465–19481CrossRefGoogle Scholar
  36. Holben B, Eck T, Slutsker I, Tanre D, Buis J, Setzer A, Vermote E, Reagan J, Kaufman Y, Nakajima T (1998) AERONET—a federated instrument network and data archive for aerosol characterization. Remote Sens Environ 66(1):1–16CrossRefGoogle Scholar
  37. Houghton JT, Ding Y, Griggs DJ et al (2001) The scientific basis. Intergovernmental Panel on Climate Change, GenevaGoogle Scholar
  38. Hsu NC, Tsay S-C, King MD, Herman JR (2006) Deep blue retrievals of Asian aerosol properties during ACE-Asia. IEEE Trans Geosci Remote Sens 44(11):3180–3195CrossRefGoogle Scholar
  39. Hsu NC, Gautam R, Sayer AM, Bettenhausen C, Li C, Jeong MJ, Tsay SC, Holben BN (2012) Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010. Atmos Chem Phys 12(17):8037–8053.  https://doi.org/10.5194/acp-12-8037-2012CrossRefGoogle Scholar
  40. Hsu N, Jeong MJ, Bettenhausen C, Sayer A, Hansell R, Seftor C, Huang J, Tsay SC (2013) Enhanced Deep Blue aerosol retrieval algorithm: the second generation. J Geophys Res Atmos 118(16):9296–9315CrossRefGoogle Scholar
  41. Hui F, Ci T, Cheng X, Scambos TA, Liu Y, Zhang Y, Chi Z, Huang H, Wang X, Wang F (2014) Mapping blue-ice areas in Antarctica using ETM+ and MODIS data. Ann Glaciol 55(66):129–137CrossRefGoogle Scholar
  42. Hyer E, Reid J, Zhang J (2011) An over-land aerosol optical depth data set for data assimilation by filtering, correction, and aggregation of MODIS Collection 5 optical depth retrievals. Atmos Meas Tech 4(3):379–408CrossRefGoogle Scholar
  43. Ichoku C, Chu DA, Mattoo S, Kaufman YJ, Remer LA, Tanré D, Slutsker I, Holben BN (2002) A spatio-temporal approach for global validation and analysis of MODIS aerosol products. Geophys Res Lett 29(12):MOD1-1–MOD1-4CrossRefGoogle Scholar
  44. Ichoku C, Kahn RA, Chin M (2012) Satellite contributions to the quantitative characterization of biomass burning for climate modeling. Atmos Res 111:1–28.  https://doi.org/10.1016/j.atmosres.2012.03.007CrossRefGoogle Scholar
  45. IPCC (2007) Climate change 2007: the physical science basis. Agenda 6(07):333Google Scholar
  46. IPCC (2013) Climate change 2013–the physical science basis: Working Group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New YorkGoogle Scholar
  47. Jacobson MZ (2001) Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409(6821):695–697. http://www.nature.com/nature/journal/v409/n6821/suppinfo/409695a0_S1.htmlCrossRefGoogle Scholar
  48. Jaffe D, Bertschi I, Jaeglé L, Novelli P, Reid JS, Tanimoto H, Vingarzan R, Westphal DL (2004) Long-range transport of Siberian biomass burning emissions and impact on surface ozone in western North America. Geophys Res Lett 31(16)Google Scholar
  49. Jaswal AK, Kumar N, Prasad AK, Kafatos M (2013) Decline in horizontal surface visibility over India (1961–2008) and its association with meteorological variables. Nat Hazards 68(2):929–954CrossRefGoogle Scholar
  50. Jethva H, Satheesh S, Srinivasan J (2007) Evaluation of Moderate-Resolution Imaging Spectroradiometer (MODIS) Collection 004 (C004) aerosol retrievals at Kanpur, Indo-Gangetic Basin. J Geophys Res Atmos 112(D14)Google Scholar
  51. Justice C, Giglio L, Korontzi S, Owens J, Morisette J, Roy D, Descloitres J, Alleaume S, Petitcolin F, Kaufman Y (2002) The MODIS fire products. Remote Sens Environ 83(1):244–262CrossRefGoogle Scholar
  52. Kaskaoutis DG, Kambezidis HD, Hatzianastassiou N, Kosmopoulos PG, KVS B (2007) Aerosol climatology: on the discrimination of aerosol types over four AERONET sites. Atmos Chem Phys Discuss 7(3):6357–6411.  https://doi.org/10.5194/acpd-7-6357-2007CrossRefGoogle Scholar
  53. Kaufman YJ, Fraser RS (1997) The effect of smoke particles on clouds and climate forcing. Science 277(5332):1636–1639.  https://doi.org/10.1126/science.277.5332.1636CrossRefGoogle Scholar
  54. Kaufman Y, Gitelson A, Karnieli A, Ganor E, Fraser R, Nakajima T, Mattoo S, Holben B (1994) Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurementsGoogle Scholar
  55. Kaufman YJ, Tanré D, Boucher O (2002) A satellite view of aerosols in the climate system. Nature 419(6903):215–223CrossRefGoogle Scholar
  56. Kaufman YJ, Koren I, Remer LA, Rosenfeld D, Rudich Y (2005) The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean. Proc Natl Acad Sci U S A 102(32):11207–11212.  https://doi.org/10.1073/pnas.0505191102CrossRefGoogle Scholar
  57. Khan N (2011) Marine resources in Pakistan: a tentative inventory. Pakistan Business Review, KarachiGoogle Scholar
  58. Khan M, Ghauri B, Bilal M (2015) Validation of MODIS and MISR based satellite AOT data with in-situ data for Lahore, Pakistan. Pakistan J Meteorol 11(22)Google Scholar
  59. Khattak P, Khokhar MF, Yasmin N (2014) Spatio-temporal analyses of atmospheric sulfur dioxide column densities over Pakistan by using SCIAMACHY data. Aerosol Air Qual Res 14(7):1883–1896CrossRefGoogle Scholar
  60. Khemani L (1989) Physical and chemical characteristics of atmospheric aerosols. Air Pollut Control 2:401–452Google Scholar
  61. Khokhar MF, Khalid T, Yasmin N, De Smedt I (2015a) Spatio-temporal analyses of formaldehyde over Pakistan by using SCIAMACHY and GOME-2 observations. Aerosol Air Qual Res 15(5):1760–1773CrossRefGoogle Scholar
  62. Khokhar MF, Yasmin N, Fatima N, Beirle S, Wagner T (2015b) Detection of trends and seasonal variation in tropospheric nitrogen dioxide over Pakistan. Aerosol Air Qual Res 15:2508–2524CrossRefGoogle Scholar
  63. Kosmopoulos PG, Kaskaoutis DG, Nastos PT, Kambezidis HD (2008) Seasonal variation of columnar aerosol optical properties over Athens, Greece, based on MODIS data. Remote Sens Environ 112(5):2354–2366.  https://doi.org/10.1016/j.rse.2007.11.006CrossRefGoogle Scholar
  64. Lau KM, Kim MK, Kim KM (2006) Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau. Clim Dyn 26(7–8):855–864.  https://doi.org/10.1007/s00382-006-0114-zCrossRefGoogle Scholar
  65. Lau K, Kim K, Sud Y, Walker G (2009) A GCM study of responses of the atmospheric water cycle of west africa and the atlantic to saharan dust radiative forcingGoogle Scholar
  66. Lee KH, Li Z, Kim YJ, Kokhanovsky AA (2009) Aerosol monitoring from satellite observation: a history of three decades. In: Kim YJ, Platt U, Gu MB, Iwashi H (eds) Atmospheric and biological environmental monitoring. Springer, Berlin, pp 13–38CrossRefGoogle Scholar
  67. Levelt PF, Van den Oord GH, Dobber MR, Malkki A, Visser H, De Vries J, Stammes P, Lundell JO, Saari H (2006) The ozone monitoring instrument. IEEE Trans Geosci Remote Sens 44(5):1093–1101CrossRefGoogle Scholar
  68. Levy RC, Remer LA, Mattoo S, Vermote EF, Kaufman YJ (2007) Second-generation operational algorithm: retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. J Geophys Res Atmos 112(D13)Google Scholar
  69. Levy RC, Remer LA, Kleidman RG, Mattoo S, Ichoku C, Kahn R, Eck T (2010) Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmos Chem Phys 10(21):10399–10420CrossRefGoogle Scholar
  70. Levy R, Mattoo S, Munchak L, Remer L, Sayer A, Hsu N (2013) The Collection 6 MODIS aerosol products over land and ocean. Atmos Meas Tech Discuss 6:159–259CrossRefGoogle Scholar
  71. Lohmann U, Feichter J (2005) Global indirect aerosol effects: a review. Atmos Chem Phys 5(3):715–737.  https://doi.org/10.5194/acp-5-715-2005CrossRefGoogle Scholar
  72. Maria SF, Russell LM, Gilles MK, Myneni SCB (2004) Organic aerosol growth mechanisms and their climate-forcing implications. Science 306(5703):1921–1924.  https://doi.org/10.1126/science.1103491CrossRefGoogle Scholar
  73. McCormick M, Hamill P, Chu W, Swissler T, McMaster L, Pepin T (1979) Satellite studies of the stratospheric aerosol. Bull Am Meteorol Soc 60(9):1038–1046CrossRefGoogle Scholar
  74. Mehta B, Venkataraman C, Bhushan M, Tripathi SN (2009) Identification of sources affecting fog formation using receptor modeling approaches and inventory estimates of sectoral emissions. Atmos Environ 43(6):1288–1295.  https://doi.org/10.1016/j.atmosenv.2008.11.041CrossRefGoogle Scholar
  75. Mekler Y, Quenzel H, Ohring G, Marcus I (1977) Relative atmospheric aerosol content from ERTS observations. J Geophys Res 82(6):967–970CrossRefGoogle Scholar
  76. Menon S, Hansen J, Nazarenko L, Luo Y (2002) Climate effects of black carbon aerosols in China and India. Science 297(5590):2250–2253CrossRefGoogle Scholar
  77. Misra A, Jayaraman A, Ganguly D (2008) Validation of MODIS derived aerosol optical depth over Western India. J Geophys Res Atmos 113(D4)Google Scholar
  78. Mitra AP, Sharma C (2012) Global environmental changes in South Asia: a regional perspective. Springer, New YorkGoogle Scholar
  79. Mohan M, Payra S (2009) Influence of aerosol spectrum and air pollutants on fog formation in urban environment of megacity Delhi, India. Environ Monit Assess 151(1–4):265–277CrossRefGoogle Scholar
  80. More S, Pradeep Kumar P, Gupta P, Devara P, Aher G (2013) Comparison of aerosol products retrieved from AERONET, MICROTOPS and MODIS over a tropical urban city, Pune, India. Aerosol Air Qual Res 13(1):107–121CrossRefGoogle Scholar
  81. Muslehuddin M, Mir H, Faisal N (2004) Recent occurrence of fog over Pakistan (1997 to 2000). Pakistan J Meteorol 1(2)Google Scholar
  82. Nakajima T, Higurashi A, Kawamoto K, Penner JE (2001) A possible correlation between satellite-derived cloud and aerosol microphysical parameters. Geophys Res Lett 28(7):1171–1174.  https://doi.org/10.1029/2000gl012186CrossRefGoogle Scholar
  83. Nedelec P, Thouret V, Brioude J, Sauvage B, Cammas JP, Stohl A (2005) Extreme CO concentrations in the upper troposphere over northeast Asia in June 2003 from the in situ MOZAIC aircraft data. Geophys Res Lett 32(14)Google Scholar
  84. Ohara T, Akimoto H, Kurokawa J, Horii N, Yamaji K, Yan X, Hayasaka T (2007) An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmos Chem Phys 7(16):4419–4444.  https://doi.org/10.5194/acp-7-4419-2007CrossRefGoogle Scholar
  85. Otto S, de Reus M, Trautmann T, Thomas A, Wendisch M, Borrmann S (2007) Atmospheric radiative effects of an in situ measured Saharan dust plume and the role of large particles. Atmos Chem Phys 7(18):4887–4903.  https://doi.org/10.5194/acp-7-4887-2007CrossRefGoogle Scholar
  86. Pandithurai G, Pinker R, Devara P, Takamura T, Dani K (2007) Seasonal asymmetry in diurnal variation of aerosol optical characteristics over Pune, western India. J Geophys Res Atmos 112(D8)Google Scholar
  87. Penner JE, Dickinson RE, O’Neill CA (1992) Effects of aerosol from biomass burning on the global radiation budget. Science 256(5062):1432–1434CrossRefGoogle Scholar
  88. Penner JE, Zhang SY, Chuang CC (2003) Soot and smoke aerosol may not warm climate. J Geophys Res Atmos 108(D21).  https://doi.org/10.1029/2003jd003409
  89. Pope CA, Bates DV, Raizenne ME (1995) Health effects of particulate air pollution: time for reassessment? Environ Health Perspect 103(5):472–480CrossRefGoogle Scholar
  90. Prasad AK, Singh RP (2007) Comparison of MISR-MODIS aerosol optical depth over the Indo-Gangetic basin during the winter and summer seasons (2000–2005). Remote Sens Environ 107(1–2):109–119.  https://doi.org/10.1016/j.rse.2006.09.026CrossRefGoogle Scholar
  91. Qian Y, Flanner MG, Leung LR, Wang W (2011) Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate. Atmos Chem Phys 11(5):1929–1948.  https://doi.org/10.5194/acp-11-1929-2011CrossRefGoogle Scholar
  92. Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosols, climate, and the hydrological cycle. Science 294(5549):2119–2124CrossRefGoogle Scholar
  93. Ramanathan V, Chung C, Kim D, Bettge T, Buja L, Kiehl JT, Washington WM, Fu Q, Sikka DR, Wild M (2005) Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. Proc Natl Acad Sci U S A 102(15):5326–5333.  https://doi.org/10.1073/pnas.0500656102CrossRefGoogle Scholar
  94. Remer LA, Kaufman Y, Tanré D, Mattoo S, Chu D, Martins JV, Li R-R, Ichoku C, Levy R, Kleidman R (2005) The MODIS aerosol algorithm, products, and validation. J Atmos Sci 62(4):947–973CrossRefGoogle Scholar
  95. Rosenfeld D, Lensky IM (1998) Satellite–based insights into precipitation formation processes in continental and maritime convective clouds. Bull Am Meteorol Soc 79(11):2457–2476.  https://doi.org/10.1175/1520-0477(1998)079<2457:sbiipf>2.0.co;2CrossRefGoogle Scholar
  96. Samet JM, Dominici F, Curriero FC, Coursac I, Zeger SL (2000) Fine particulate air pollution and mortality in 20 US cities, 1987–1994. N Engl J Med 343(24):1742–1749CrossRefGoogle Scholar
  97. Saraf AK, Bora AK, Das J, Rawat V, Sharma K, Jain SK (2011) Winter fog over the Indo-Gangetic Plains: mapping and modelling using remote sensing and GIS. Nat Hazards 58(1):199–220CrossRefGoogle Scholar
  98. Sarkar S, Chokngamwong R, Cervone G, Singh RP, Kafatos M (2006) Variability of aerosol optical depth and aerosol forcing over India. Adv Space Res 37(12):2153–2159.  https://doi.org/10.1016/j.asr.2005.09.043CrossRefGoogle Scholar
  99. Seinfeld JH, Pandis SN (2012) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, ChichesterGoogle Scholar
  100. Singh R, Dey S, Tripathi S, Tare V, Holben B (2004) Variability of aerosol parameters over Kanpur, northern India. J Geophys Res Atmos 109(D23)Google Scholar
  101. Smart JCR, Hicks K, Morrissey T, Heinemeyer A, Sutton MA, Ashmore M (2011) Applying the ecosystem service concept to air quality management in the UK: a case study for ammonia. Environmetrics 22(5):649–661.  https://doi.org/10.1002/env.1094CrossRefGoogle Scholar
  102. Smirnov A, Holben B, Eck T, Dubovik O, Slutsker I (2000) Cloud-screening and quality control algorithms for the AERONET database. Remote Sens Environ 73(3):337–349CrossRefGoogle Scholar
  103. Stowe LL, Jacobowitz H, Ohring G, Knapp KR, Nalli NR (2002) The advanced very high resolution radiometer (AVHRR) pathfinder atmosphere (PATMOS) climate dataset: initial analyses and evaluations. J Climate 15(11):1243–1260CrossRefGoogle Scholar
  104. Streets DG, Canty T, Carmichael GR, de Foy B, Dickerson RR, Duncan BN, Edwards DP, Haynes JA, Henze DK, Houyoux MR (2013) Emissions estimation from satellite retrievals: a review of current capability. Atmos Environ 77:1011–1042CrossRefGoogle Scholar
  105. Syed FS, Körnich H, Tjernström M (2012) On the fog variability over south Asia. Climate Dynam 39(12):2993–3005.  https://doi.org/10.1007/s00382-012-1414-0CrossRefGoogle Scholar
  106. Tanré D, Bréon F, Deuzé J, Dubovik O, Ducos F, François P, Goloub P, Herman M, Lifermann A, Waquet F (2011) Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: the PARASOL mission. Atmos Meas Tech 4(7):1383–1395CrossRefGoogle Scholar
  107. Tiwari S, Payra S, Bhisht DS (2010) Visibility degradation during foggy period due to anthropogenic urban aerosol at Delhi, India. In: 5th International conference on fog, fog collection and Dew Munster, Germany, 25–30 JulyGoogle Scholar
  108. Torres O, Bhartia PK, Herman JR, Sinyuk A, Ginoux P, Holben B (2002) A long-term record of aerosol optical depth from TOMS observations and comparison to AERONET measurements. J Atmos Sci 59(3):398–413.  https://doi.org/10.1175/1520-0469(2002)059<0398:altroa>2.0.co;2CrossRefGoogle Scholar
  109. Tripathi S, Dey S, Chandel A, Srivastava S, Singh RP, Holben B (2005) Comparison of MODIS and AERONET derived aerosol optical depth over the Ganga Basin, India. Ann Geophys 23:1093–1101CrossRefGoogle Scholar
  110. Twomey S (1977) The influence of pollution on the shortwave Albedo of clouds. J Atmos Sci 34(7):1149–1152.  https://doi.org/10.1175/1520-0469(1977)034<1149:tiopot>2.0.co;2CrossRefGoogle Scholar
  111. Veefkind JP, de Leeuw G, Durkee PA (1998) Retrieval of aerosol optical depth over land using two-angle view satellite radiometry during TARFOX. Geophys Res Lett 25(16):3135–3138CrossRefGoogle Scholar
  112. Veefkind JP, Boersma K, Wang J, Kurosu T, Krotkov N, Chance K, Levelt P (2011) Global satellite analysis of the relation between aerosols and short-lived trace gases. Atmos Chem Phys 11(3):1255–1267CrossRefGoogle Scholar
  113. Veihelmann B, Veefkind J, Braak R, Levelt P, de Haan JF (2007) Aerosol properties from OMI using the multi-wavelength algorithm. ESA Publications, NoordwijkGoogle Scholar
  114. Vijayakumar K, Devara P, Simha C (2012) Aerosol features during drought and normal monsoon years: a study undertaken with multi-platform measurements over a tropical urban site. Aerosol Air Qual Res 12(6):1444–1458CrossRefGoogle Scholar
  115. Warneck P (1988) Chemistry ofthe natural atmosphere. Int Geophys Ser 41:279–373Google Scholar
  116. WHO (2014) Ambient (outdoor) air pollution in cities database 2014. World Health Organization, GenevaGoogle Scholar
  117. Winker DM, Couch RH, McCormick M (1996) An overview of LITE: NASA’s lidar in-space technology experiment. Proc IEEE 84(2):164–180CrossRefGoogle Scholar
  118. Winker DM, Hunt WH, Hostetler CA (2004) Status and performance of the CALIOP lidar. In: Remote sensing, 2004. International Society for Optics and Photonics, pp 8–15Google Scholar
  119. Yasmeen Z, Rasul G, Zahid M (2012) Impact of aerosols on winter fog of Pakistan. Pakistan J Meteorol 8(16)Google Scholar
  120. Yasunari TJ, Bonasoni P, Laj P, Fujita K, Vuillermoz E, Marinoni A, Cristofanelli P, Duchi R, Tartari G, Lau KM (2010) Estimated impact of black carbon deposition during pre-monsoon season from Nepal Climate Observatory – Pyramid data and snow albedo changes over Himalayan glaciers. Atmos Chem Phys 10(14):6603–6615.  https://doi.org/10.5194/acp-10-6603-2010CrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  1. 1.Institute of Environmental Sciences and EngineeringNational University of Sciences and TechnologyIslamabadPakistan

Personalised recommendations