Aerosol Properties over Kuching, Sarawak from Satellite and Ground-Based Measurements

  • Arnis Asmat
  • Khairunnisa Abdul Jalal
  • Siti Noratiqah Mohd Deros
Part of the Springer Remote Sensing/Photogrammetry book series (SPRINGERREMO)


The effect of aerosols on the global and regional climate can be understood through an insight into the properties of aerosols. In this article, the optical properties of aerosols were analyzed through the ground-based Aerosol Robotic Network (AERONET) and MODIS satellite data over Kuching city in northwestern Sarawak. This study deals with the optical properties of aerosols: aerosol optical depth (AOD), Angstrom exponent (α), single scattering albedo (SSA), and the asymmetry factor (ASY) during 2011–2012 over Kuching city, Sarawak, Malaysia. The results show that the variability in optical properties of aerosols can be determined by the type of aerosol or the source of the aerosol. In the study area, higher concentrations are encountered due to the presence of aerosol from urban activities, especially during the dry season. While monsoonal rainfall tends to reduce aerosol concentrations by washing aerosols out of the atmosphere, their effect is still significant during the wet season.


Aerosols Urban areas MODIS Malaysia 



The authors thank the PIs for their effort in establishing and maintaining Kuching sites for the provision of AERONET data and are grateful to the MODIS teams at NASA for the provision of satellite data.


  1. Afroz R, Hassan MN, Ibrahim NA (2003) Review of air pollution and health impacts in Malaysia. Environ Res 92(2):71–77CrossRefGoogle Scholar
  2. Alam K, Trautmann T, Blaschke T (2011) Aerosol optical properties and radiative forcing over mega-city Karachi. Atmos Res 101:773–782CrossRefGoogle Scholar
  3. Ali M, Tariq S, Mahmood K, Daud A, Batool A, Haq Z (2014) A study of aerosol properties over Lahore (Pakistan) by using AERONET data. Asia-Pac J Atmos Sci 50(2):153–162CrossRefGoogle Scholar
  4. Badarinath KVS, Kharol SK, Latha KM, Chand TR, Prasad VK, Jyothsna AN, Samatha K (2007) Multiyear ground-based and satellite observations of aerosol properties over a tropical urban area in India. Atmos Sci Lett 8(1):7–13CrossRefGoogle Scholar
  5. Badarinath KVS, Kharol SK, Krishna Prasad V, Kaskaoutis DG, Kambezidis HD (2008) Variation in aerosol properties over Hyderabad, India during intense cyclonic conditions. Int J Remote Sens 29(15):4575–4597CrossRefGoogle Scholar
  6. Badarinath KVS, Sharma AR, Kharol SK, Prasad VK (2009) Variations in CO, O3 and black carbon aerosol mass concentrations associated with planetary boundary layer (PBL) over tropical urban environment in India. J Atmos Chem 62(1):73–86CrossRefGoogle Scholar
  7. Cheng AYS, Chan MH, Yang X (2006) Study of aerosol optical thickness in Hong Kong, validation, results, and dependence on meteorological parameters. Atmos Environ 40:4469–4477CrossRefGoogle Scholar
  8. Chu DA, Kaufman YJ, Ichoku C, Remer LA, Tanre D, Holben BN (2002) Validation of MODIS aerosol optical depth retrieval over land. Geophys Res Lett 29(12).
  9. Chung CE, Ramanathan V, Kim D, Podgorny LA (2005) Global anthropogenic aerosol direct forcing derived from satellite and ground-based observations. J Geophys Res 110:D24207. CrossRefGoogle Scholar
  10. City of Kuching Ordinance (1988) Sarawak State Attomey-General’s chambers. p 3, Chapter 48Google Scholar
  11. Dominick D, Latif MT, Juahir H, Aris AZ, Zain SM (2012) An assessment of influence of meteorological factors on PM10 and NO2 at selected stations in Malaysia. Sustain Environ Res 22(5):305–315Google Scholar
  12. Dubovik O, Holben BN, Eck TF, Smirnov A, Kaufman YJ, King MD, Tanre D, Slutsker I (2002) Variability of absorption and optical properties of key aerosol types in worldwide location. J Atmos Sci 59:590–608CrossRefGoogle Scholar
  13. Eck TF, Holben BN, Reid JS, Dubovik O, Smirnov A, O’Neill NT, Slutsker I, Kinne S (1999) Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J Geophys Res 104:333–349CrossRefGoogle Scholar
  14. Eck TF, Holben BN, Dubovik O, Smirnov A, Goloub P, Chen HB, Chatenet B, Gomes L, Zhang X-Y, Tsay S-C, Ji Q, Giles D, Slutsker I (2005) Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-Pacific. J Geophys Res 110:D06202. CrossRefGoogle Scholar
  15. Gadhavi H, Jayaraman A (2010) Absorbing aerosols: contribution of biomass burning and implications for radiative forcing. Ann Geophys 28:103–111CrossRefGoogle Scholar
  16. Gupta P, Christopher SA, Wang J, Gehrig R, Lee Y, Kumar N (2006) Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmos Environ 40:5880–5892CrossRefGoogle Scholar
  17. Hayasaka H, Noguchi I, Putra EI, Yulianti N, Vadrevu K (2014) Peat-fire-related air pollution in Central Kalimantan, Indonesia. Environ Pollut 195:257–266CrossRefGoogle Scholar
  18. Higurashi A, Nakajima T (2002) Detection of aerosol types over the East China Sea near Japan from four-channel satellite data. Geophys Res Lett 29(17):1836. CrossRefGoogle Scholar
  19. Holben BN, Eck TF, Slutsker I, Tanre D, Buis JP, Setzer A, Vermote E, Reagan JA, Kaufman YJ, Nakajima T, Lavenu F, Jankowiak I, Smirnov A (1998) Remote Sens Environ 66:1–16CrossRefGoogle Scholar
  20. IPCC (2001) Climate change 2001: the scientific basic. Cambridge University Press, CambridgeGoogle Scholar
  21. Jamhari AA, Sahani M, Latif MT, Chan KM, Tan HS, Khan MF, Tahir NM (2014) Concentration and source identification of polycyclic aromatic hydrocarbons (PAHs) in PM10 of urban, industrial and semi urban areas in Malaysia. Atmos Environ 86:16–27CrossRefGoogle Scholar
  22. Kambezidis HD, Kaskaoutis DG (2008) Aerosol climatology over four AERONET sites: an overview. Atmos Environ 42:1892–1906CrossRefGoogle Scholar
  23. Kanniah KD, Lim HQ, Kaskaoutis DG, Cracknell AP (2014) Investigating aerosol properties in Peninsular Malaysia via the synergy of satellite remote sensing and ground-based measurements. Atmos Res 138:223–230CrossRefGoogle Scholar
  24. Kant Y, Ghosh AB, Sharma MC, Gupta PK, Prasad VK, Badarinath KVS, Mitra AP (2000) Studies on aerosol optical depth in biomass burning areas using satellite and ground-based observations. Infrared Phys Technol 41(1):21–28CrossRefGoogle Scholar
  25. Kaskaoutis DG, Kambezidis HD, Hatzianastassiou N, Kosmopoulos PG, Badarinath KVS (2007) Aerosol climatology: dependence of the Angstrom exponent on wavelength over four AERONET sites. Atmos Chem Physc Discuss 7:7347–7397CrossRefGoogle Scholar
  26. Kaufman YJ, Tanre D, Gordon HR, Nakajima T, Lenoble J, Frouin R, Grassi H, Herman BM, King MD, Teillet PM (1997) Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect. J Geophys Res 102(D14):16815–16830CrossRefGoogle Scholar
  27. Kaufman YJ, Boucher O, Tanré D, Chin M, Remer LA, Takemura T (2005) Aerosol anthropogenic component estimated from satellite data. Geophys Res Lett 4.
  28. Kaufman YJ, Tanre D, Gordon HR, Nakajima T, Lenoble J, Frouin R, Grassl H, Herman BM, King MD, Teillet PM (2007) Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect. J Geophys Res 102:16815–16830CrossRefGoogle Scholar
  29. Kedia S, Ramachandran S, Holben BN, Tripathi SN (2014) Quantification of aerosol type, and sources of aerosols over the Indo-Gangetic Plain. Atmos Environ 98:607-619Google Scholar
  30. King MD, Kaufman YJ, Tanre D, Nakajima T (1999) Remote sensing of tropospheric aerosols from space: past, present and future. Bull Am Meteorol Soc 80(11):2229–2259CrossRefGoogle Scholar
  31. Kosmopoulus PG, Kaskaoutis DG, Nastos PT, Kambezidis HD (2008) Seasonal variation of columnar aerosol optical properties over Athens, Greece, based on MODIS data. Remote Sens Environ 112:2354–2366CrossRefGoogle Scholar
  32. Le TH, Nguyen TNT, Lasko K, Ilavajhala S, Vadrevu KP, Justice C (2014) Vegetation fires and air pollution in Vietnam. Environ Pollut 195:267–275CrossRefGoogle Scholar
  33. Lee J, Kim J, Song CH, Kim SB, Chun Y, Sohn BJ, Holben BN (2010) Characteristics of aerosol types from AERONET sunphotometer measurements. Atmos Environ 44:2110–2117Google Scholar
  34. Levy RC, Remer LA, Kleidman RG, Mattoo S, Ichoku C, Kahn R, Eck TF (2010) Global evaluation of the collection 5 MODIS dark-target aerosol products over land. Atmos Chem Phys Discuss 10:14815–14873CrossRefGoogle Scholar
  35. Liu J, Zheng Y, Li Z, Wu R (2008) Ground-based remote sensing of aerosol optical properties in one city in Northwest China. Atmos Res 89:194–205CrossRefGoogle Scholar
  36. Lohmann U, Feichter J (1997) Impact of sulfate aerosols on albedo and lifetime of clouds: a sensitivity study with the ECHAM4 GCM. J Geophys Res 102(D12):13685–13700CrossRefGoogle Scholar
  37. Annual Report from Malaysian Meteorological Department (2012) Available from
  38. Matheson MA, Coakley JA, Tahnk WR (2005) Aerosol and cloud property relationships for summertime stratiform clouds on the northeastern Atlantic from Advanced Very High Resolution Radiometer observations. J Geophys Res 110:D24CrossRefGoogle Scholar
  39. Mishra AK, Klingmueller K, Fredj E, Lelieveld J, Rudich Y, Koren I (2014) Radiative signature of absorbing aerosol over the eastern Mediterranean basin. Atmos Chem Phys 14:7213–7231CrossRefGoogle Scholar
  40. Nakajima T, Higurashi A, Kawamoto K, Penner JE (2001) A possible correlation between satellite-derived cloud and aerosol microphysical parameters. Geophys Res Lett 28(7):1171–1174CrossRefGoogle Scholar
  41. Prasad AK, Singh RP (2007) Comparison of MISR- MODIS Aerosol Optical Depth over INDO-Gangatic Basin during the Winter and Premonsoon Seasons (2000-2005). Remote Sens Environ 107:109–119Google Scholar
  42. Reid JS, Hyer EJ, Johnson RS et al (2013) Observing and understanding the Southeast Asian aerosol system by remote sensing: an initial review and analysis for the Seven Southeast Asian Studies (7SEAS) program. Atmos Res 122:403–468CrossRefGoogle Scholar
  43. Remer L, Kaufman Y, Tanré D, Mattoo S, Chu D, Martins J, Ichoku R, Levy R, Kleidman R, Eck T, Vermote E, Holben B (2005) The MODIS aerosol algorithm, products, and validation. J Atmos Sci 62:947–973CrossRefGoogle Scholar
  44. Rozwadowska A, Sobolewski P (2010) Variability in aerosol optical properties at Hornsund, Spitsbergen. Oceanologia 52(4):599–620CrossRefGoogle Scholar
  45. Salinas SV, Chew BN, Liew SC (2009) Retrievals of aerosol optical depth and Angstrom exponent from ground-based Sun-photometer data of Singapore. Appl Optics 48:8CrossRefGoogle Scholar
  46. Salinas SV, Chew BN, Mohamad M, Mahmud M, Liew SC (2013) First measurements of aerosol optical depth and Angstrom exponent number from AERONET’s Kuching site. Atmos Environ 78:231–241CrossRefGoogle Scholar
  47. Singh S, Soni K, Bano T, Tanwar RS, Nath S, Arya BC (2010) Clear sky direct aerosol radiative forcing variations over mega-city Delhi. Ann Geophys 28:1157–1166CrossRefGoogle Scholar
  48. Smirnov A, Holben BN, Kaufman YJ, Dubovik O, Eck TF, Slutsker I, Pietras C, Halthore RN (2002) Optical properties of atmospheric aerosol in maritime environments. J Atmos Sci 59:501–523CrossRefGoogle Scholar
  49. Sumit K, Devara PCS, Manoj MG (2012) Multi-size characterization of tropical aerosols: implications for regional radiative forcing. Atmos Res 106:71–85CrossRefGoogle Scholar
  50. Toledano C, Cachorro VE, Berjon A, De Frutos AM, Sorribas M, De la Morena BA, Goloub P (2007) Aerosol optical depth and Angstrom exponent climatology at El Arenosillo AERONET site (Huelva, Spain). Q J Roy Meteorol Soc 133:795–807CrossRefGoogle Scholar
  51. Tripathi SN, Sagnik D, Chandel A, Srivastava S, Singh RP, Holben BN (2005) Comparison of MODIS and AERONET derived aerosol optical depth over the Ganga Basin, India. Ann Geophys 23:1093–1101CrossRefGoogle Scholar
  52. Tulloch M, Li J (2004) Applications of satellite remote sensing to urban air quality monitoring: status and potential solutions to Canada. Environ Inform Arch 2:846–854Google Scholar
  53. Vadrevu KP, Ellicott E, Badarinath KVS, Vermote E (2011) MODIS derived fire characteristics and aerosol optical depth variations during the agricultural residue burning season, north India. Environ Pollut 159(6):1560–1569CrossRefGoogle Scholar
  54. Vadrevu KP, Ellicott E, Giglio L, Badarinath KVS, Vermote E, Justice C, Lau WK (2012) Vegetation fires in the himalayan region–aerosol load, black carbon emissions and smoke plume heights. Atmos Environ 47:241–251CrossRefGoogle Scholar
  55. Vadrevu KP, Lasko K, Giglio L, Justice C (2014) Analysis of Southeast Asian pollution episode during June 2013 using satellite remote sensing datasets. Environ Pollut 195:245–256CrossRefGoogle Scholar
  56. Vadrevu KP, Lasko K, Giglio L, Justice C (2015) Vegetation fires, absorbing aerosols and smoke plume characteristics in diverse biomass burning regions of Asia. Environ Res Lett 10(10):105003CrossRefGoogle Scholar
  57. Verma N, Bagare SP, Ningombam SS, Singh RB (2010) Aerosol optical properties retrieved using Skyradiometer at Hanle in western Himalayas. J Atmos Sol Terr Phys 72:115–124CrossRefGoogle Scholar
  58. Widory D, Negrel P (2009) Urban aerosols. Geosciences 1:46–52Google Scholar
  59. Zawadzka O, Markowicz KM, Pietruczuk A, Zielinski T, Jaroslawski J (2013) Impact of urban pollution emitted in Warsaw on aerosol properties. Atmos Environ 69:15–28CrossRefGoogle Scholar
  60. Zhao M, Heinsch FA, Nemani RR, Running SW (2005) Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens Environ 95(2):164–176CrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  • Arnis Asmat
    • 1
  • Khairunnisa Abdul Jalal
    • 1
  • Siti Noratiqah Mohd Deros
    • 1
  1. 1.Faculty of Applied SciencesSchool of Chemistry and Environmental Studies, Universiti Teknologi MARA (UiTM)Shah AlamMalaysia

Personalised recommendations