Dry Deposition of Reactive Nitrogen Species in Tropics

  • Reema Tiwari
  • Umesh Kulshrestha
Part of the Springer Remote Sensing/Photogrammetry book series (SPRINGERREMO)


With the rising demand for food and energy security across the globe, the reactive nitrogen species (Nr) has undergone a rapid accumulation as \( {\mathrm{NO}}_3^{-} \) and \( {\mathrm{NH}}_4^{+} \) even in the remote region of the world. The growing sources and altered transport pathways of global nitrogen cycling have consequently provided an increasing interaction of excess Nr with the atmospheric transport and removal mechanism. This has resulted in the exceedance of Nr deposition fluxes beyond its critical threshold level with a cascade of environmental, health and related economic problems arising from its sequential transfer through different environmental compartments. Hence, the problem of excess Nr as one of the most pressing issues of the environment has been well documented by assessment reports and budget inventories of the developed nations. However, with global shifts in land use pattern and the expanding fringes of semi-arid deserts, there is a growing need for exploring the role of mineral dust as the ultimate sink to the excess Nr acidity in the atmosphere. High temperature condition of the tropics along with the atmospheric abundance of mineral dust rich in carbonate and bicarbonate of Ca2+ and Mg2+ has been instrumental to the size segregated partitioning of Nr towards the coarse mode phase. This chapter addresses the spatial gaps arising from the level of uncertainty attached in the estimation of Nr fluxes due to the changing dynamics of land use patterns. Delhi being the epitome of the growing pollution and population problem of the Indo-Gangetic plain has been chosen as a reference site for deciphering the interaction mechanism involved in mineral dust scavenging of Nr. Such a comprehensive overview of the global deposition rates of Nr along with the estimates from our case study would be helpful in strengthening our present understanding of the Nr tropospheric reactions and its removal processes under dry weather condition.


Reactive nitrogen deposition Tropics 



We sincerely thank the financial support received from University Grant Commission (UGC), New Delhi, to conduct this research work.


  1. Andreae MO (1995) Climatic effects of changing atmospheric aerosol levels. World Surv Climatol 16:347–398CrossRefGoogle Scholar
  2. Arimoto R (2001) Eolian dust and climate: relationships to sources, tropospheric chemistry, transport and deposition. Earth Sci Rev 54(1):29–42CrossRefGoogle Scholar
  3. Arimoto R, Kim YJ, Kim YP, Quinn PK, Bates TS, Anderson TL, Sokolik IN (2006) Characterization of Asian dust during ACE-Asia. Glob Planet Change 52(1):23–56CrossRefGoogle Scholar
  4. Badarinath KVS, Kharol SK, Latha KM, Chand TR, Prasad VK, Jyothsna AN, Samatha K (2007) Multiyear ground-based and satellite observations of aerosol properties over a tropical urban area in India. Atmos Sci Lett 8(1):7–13CrossRefGoogle Scholar
  5. Badarinath KVS, Sharma AR, Kharol SK, Prasad VK (2009) Variations in CO, O3 and black carbon aerosol mass concentrations associated with planetary boundary layer (PBL) over tropical urban environment in India. J Atmos Chem 62(1):73–86CrossRefGoogle Scholar
  6. Bardouki H, Liakakou H, Economou C, Sciare J, Smolík J, Ždímal V et al (2003) Chemical composition of size-resolved atmospheric aerosols in the eastern Mediterranean during summer and winter. Atmos Environ 37(2):195–208. CrossRefGoogle Scholar
  7. Bari A, Ferraro V, Wilson LR, Luttinger D, Husain L (2003) Measurements of gaseous HONO, HNO3, SO2, HCl, NH3, particulate sulfate and PM2.5 in New York, NY. Atmos Environ 37(20):2825–2835. CrossRefGoogle Scholar
  8. Bauer SE (2004) Global modeling of heterogeneous chemistry on mineral aerosol surfaces: influence on tropospheric ozone chemistry and comparison to observations. J Geophys Res 109(D2):1–17. CrossRefGoogle Scholar
  9. Bauer SE, Koch D, Unger N, Metzger SM, Shindell DT, Streets DG (2007) Nitrate aerosols today and in 2030: a global simulation including aerosols and tropospheric ozone. Atmos Chem Phys 7(19):5043–5059. CrossRefGoogle Scholar
  10. Belnap J, Gillette DA (1997) Disturbance of biological soil crusts: impacts on potential wind erodibility of sandy desert soils in southeastern Utah. Land Degrad Dev 8(4):355–362CrossRefGoogle Scholar
  11. Berkowitz CM, Jobson T, Jiang G, Spicer CW, Doskey PV (2004) Chemical and meteorological characteristics associated with rapid increases of O3 in Houston, Texas. J Geophys Res D Atmos 109(10):1–12. CrossRefGoogle Scholar
  12. Das R, Das SN, Misra VN (2005) Chemical composition of rainwater and dustfall at Bhubaneswar in the east coast of India. Atmos Environ 39(32):5908–5916. CrossRefGoogle Scholar
  13. Dentener FJ, Carmichael GR, Zhang Y, Lelieveld J, Crutzen PJ (1996) Role of mineral aerosol as a reactive surface in the global troposphere. J Geophys Res Atmos (1984–2012) 101(D17):22869–22889CrossRefGoogle Scholar
  14. Duce RA, Liss PS, Merrill JT, Atlas EL, Buat-Menard P, Hicks BB, Zhou M (1991) The atmospheric input of trace species to the world ocean. Glob Biogeochem Cycles 5(3):193–259CrossRefGoogle Scholar
  15. Fairlie TD, Jacob DJ, Dibb JE, Alexander B, Avery MA, Van Donkelaar A, Zhang L (2010) Impact of mineral dust on nitrate, sulfate, and ozone in transpacific Asian pollution plumes. Atmos Chem Phys 10(8):3999–4012. CrossRefGoogle Scholar
  16. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP et al (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70(2):153–226CrossRefGoogle Scholar
  17. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR et al (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science (New York, NY) 320(5878):889–892. CrossRefGoogle Scholar
  18. Gerecke A, Thielmann A, Gutzwiller L, Rossi MJ (1998) The chemical kinetics of HONO formation resulting from heterogeneous interaction of NO2 with flame soot. Geophys Res Lett 25(13):2453–2456CrossRefGoogle Scholar
  19. Hewitt CN, Jackson AV (eds) (2008) Handbook of atmospheric science: principles and applications. Wiley, New YorkGoogle Scholar
  20. Im U, Christodoulaki S, Violaki K, Zarmpas P, Kocak M, Daskalakis N et al (2013) Atmospheric deposition of nitrogen and sulfur over southern Europe with focus on the Mediterranean and the Black Sea. Atmos Environ 81:660–670. CrossRefGoogle Scholar
  21. Keene WC, Pszenny AA, Maben JR, Sander R (2002) Variation of marine aerosol acidity with particle size. Geophys Res Lett 29(7):5-1CrossRefGoogle Scholar
  22. Kondo Y, Morino Y, Fukuda M, Kanaya Y, Miyazaki Y, Takegawa N et al (2008) Formation and transport of oxidized reactive nitrogen, ozone, and secondary organic aerosol in Tokyo. J Geophys Res 113(21):1–23. CrossRefGoogle Scholar
  23. Krueger BJ, Grassian VH, Cowin JP, Laskin A (2004) Heterogeneous chemistry of individual mineral dust particles from different dust source regions: the importance of particle mineralogy. Atmos Environ 38(36):6253–6261. CrossRefGoogle Scholar
  24. Kubilay N, Nickovic S, Moulin C, Dulac F (2000) An illustration of the transport and deposition of mineral dust onto the eastern Mediterranean. Atmos Environ 34(8):1293–1303. CrossRefGoogle Scholar
  25. Kulshrestha UC (2009) Atmospheric dust in India-A natural geo-engineering tool to combat climate change. ENVIS Newsletter SES JNU ISSN-0974-1364 14(3):2–5Google Scholar
  26. Kulshrestha U (2013) Acid rain. In: Jorgensen SE (ed) Encyclopedia of environmental management, vol I. Taylor & Francis, New York, pp 8–22Google Scholar
  27. Kulshrestha UC, Saxena A, Kumar N, Kumari KM, Srivastava SS (1998) Chemical composition and association of size-differentiated aerosols at a suburban site in a semi-arid tract of India. J Atmos Chem 29(2):109–118CrossRefGoogle Scholar
  28. Kulshrestha UC, Kulshrestha MJ, Sekar R, Sastry GSR, Vairamani M (2003) Chemical characteristics of rainwater at an urban site of south-central India. Atmos Environ 37(21):3019–3026. CrossRefGoogle Scholar
  29. Kulshrestha MJ, Singh R, Duarah R, Rao PG (2014a) Influence of crustal aerosols on wet deposition at a rural site of North-East India. Int J Environ Stud 71(4):510–525CrossRefGoogle Scholar
  30. Kulshrestha UC, Kulshrestha MJ, Satyanarayana J, Reddy LAK (2014b) Atmospheric deposition of reactive nitrogen in India. In: Sutton M et al (eds) Nitrogen deposition, critical loads and biodiversity. Springer, Dordrecht, pp 75–82CrossRefGoogle Scholar
  31. Lamb PJ, Peppler RA, Hastenrath S (1986) Interannual variability in the tropical Atlantic. Nature (London) 322:238–240CrossRefGoogle Scholar
  32. Lawrence CR, Neff JC (2009) The contemporary physical and chemical flux of aeolian dust: a synthesis of direct measurements of dust deposition. Chem Geol 267(1–2):46–63. CrossRefGoogle Scholar
  33. Lefer BL, Talbot RW, Munger JW (1999) Nitric acid and ammonia at a rural northeastern US site. J Geophys Res 104(D1):1645–1661CrossRefGoogle Scholar
  34. Martin D, Bergametti G, Strauss B (1990) On the use of the synoptic vertical velocity in trajectory model: validation by geochemical tracers. Atmos Environ Part A Gen Top 24(8):2059–2069CrossRefGoogle Scholar
  35. Matsumoto K, Minami H, Uyama Y, Uematsu M (2009) Size partitioning of particulate inorganic nitrogen species between the fine and coarse mode ranges and its implication to their deposition on the surface ocean. Atmos Environ 43(28):4259–4265. CrossRefGoogle Scholar
  36. Maxwell-Meier K, Weber R, Song C, Orsini D, Ma Y, Carmichael GR, Streets DG (2004) Inorganic composition of fine particles in mixed mineral dust-pollution plumes observed from airborne measurements during ACE-Asia. J Geophys Res D Atmos 109(19):1–20. CrossRefGoogle Scholar
  37. McConnell JR, Aristarain AJ, Banta JR, Edwards PR, Simões JC (2007) 20th-Century doubling in dust archived in an Antarctic Peninsula ice core parallels climate change and desertification in South America. Proc Natl Acad Sci 104(14):5743–5748CrossRefGoogle Scholar
  38. Mohan M, Pathan SK, Narendrareddy K, Kandya A, Pandey S (2011) Dynamics of urbanization and its impact on land-use/land-cover: a case study of megacity Delhi. J Environ Prot 2(9):1274CrossRefGoogle Scholar
  39. Moulin C, Chiapello I (2006) Impact of human-induced desertification on the intensification of Sahel dust emission and export over the last decades. Geophys Res Lett 33(18):L18808CrossRefGoogle Scholar
  40. NCRPB (1999) National capital region growth & development. National Capital Region Planning Board, New DelhiGoogle Scholar
  41. Neff JC, Reynolds RL, Belnap J, Lamothe P (2005) Multi-decadal impacts of grazing on soil physical and biogeochemical properties in southeast Utah. Ecol Appl 15(1):87–95.sCrossRefGoogle Scholar
  42. Neff JC, Ballantyne AP, Farmer GL, Mahowald NM, Conroy JL, Landry CC, Overpeck JT, Painter TH, Lawrence CR, Reynolds RL (2008) Increasing eolian dust deposition in the western United States linked to human activity. Nat Geosci 1(3):189–195CrossRefGoogle Scholar
  43. Pillai AG, Naik MS, Momin GA, Rao PSP, Safai PD, Ali K, Granat L (2001) Studies of wet deposition and dustfall at Pune, India. Water Air Soil Pollut 130(1–4):475–480CrossRefGoogle Scholar
  44. Pitts BF, Pitts JN (2000) Chemistry of the upper and lower atmosphere: theory, experiments and applications. Academic, San DiegoGoogle Scholar
  45. Prasad VK, Stinner B, Stinner D, Cardina J, Moore R, Gupta PK, Tsuruta H, Tanabe K, Badarinath KVS, Hoy C (2003) Trends in food production and nitrous oxide emissions from the agriculture sector in India: environmental implications. Reg Environ Change 3(4):154–161CrossRefGoogle Scholar
  46. Prasad VK, Badarinath KVS, Yonemura S, Tsuruta H (2004) Regional inventory of soil surface nitrogen balances in Indian agriculture (2000–2001). J Environ Manage 73(3):209–218CrossRefGoogle Scholar
  47. Prospero JM, Nees RT (1986) Impact of the North African drought and El Nino on mineral dust in the Barbados trade winds. Nature 320:735–738CrossRefGoogle Scholar
  48. Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE (2002) Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev Geophys 40(1):2-1CrossRefGoogle Scholar
  49. Rao CN, Stowe LL, McClain EP, Sapper J, McCormick MP (1988) Development and application of aerosol remote sensing with AVHRR data from the NOAA satellites. In: Hobbs P, McCormick MP (eds) Aerosols and Climate. Deepak, Hampton, pp 69–80Google Scholar
  50. Rastogi N, Sarin MM (2005) Long-term characterization of ionic species in aerosols from urban and high-altitude sites in western India: role of mineral dust and anthropogenic sources. Atmos Environ 39(30):5541–5554. CrossRefGoogle Scholar
  51. Reis S, Pinder RW, Zhang M, Lijie G, Sutton MA (2009) Reactive nitrogen in atmospheric emission inventories. Atmos Chem Phys 9:7657–7677. CrossRefGoogle Scholar
  52. Rengarajan R, Sarin MM, Sudheer AK (2007) Carbonaceous and inorganic species in atmospheric aerosols during wintertime over urban and high-altitude sites in North India. J Geophys Res 112(21):1–16. CrossRefGoogle Scholar
  53. Ruijrok W, Davidson CI, Nicholson W (1995) Dry deposition of particles. Tellus B 47(5):587–601CrossRefGoogle Scholar
  54. Russell KM, Keene WC, Maben JR, Galloway JN, Moody JL (2003) Phase partitioning and dry deposition of atmospheric nitrogen at the mid-Atlantic US coast. J Geophys Res 108(D21):4656Google Scholar
  55. Salam A, Bauer H, Kassin K, Ullah SM, Puxbaum H (2003) Aerosol chemical characteristics of a mega-city in Southeast Asia (Dhaka–Bangladesh). Atmos Environ 37(18):2517–2528CrossRefGoogle Scholar
  56. Sehmel GA, Hodgson WH (1978) Model for predicting dry deposition of particles and gases to environmental surfaces (no. PNL-SA-6721; CONF-780611-10). Battelle Pacific Northwest Labs, RichlandGoogle Scholar
  57. Seinfeld JH, Carmichael GR, Arimoto R, Conant WC, Brechtel FJ, Bates TS, Zhang XY (2004) ACE-ASIA-Regional climatic and atmospheric chemical effects of Asian dust and pollution. Bull Am Meteorol Soc 85(3):367–380CrossRefGoogle Scholar
  58. Sellegri K, Gourdeau J, Despiau S, Putaud JP (2001) Chemical composition of marine aerosol in a Mediterranean coastal zone during the FETCH experiment. J Geophys Res 106(D11):12023–12037CrossRefGoogle Scholar
  59. Seto KC, Shepherd JM (2009) Global urban land-use trends and climate impacts. Curr Opin Environ Sustain 1(1):89–95CrossRefGoogle Scholar
  60. Shandilya KK, Khare M, Gupta AB (2009) Defining aerosols by physical and chemical characteristics. Indian. J Air Pollut Control 9(1):107–126Google Scholar
  61. Sokolik IN, Toon OB (1996) Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature 381(6584):681–683CrossRefGoogle Scholar
  62. Song CH, Carmichael GR (2001) Gas-particle partitioning of nitric acid modulated by alkaline aerosol. J Atmos Chem 40(1):1–22. CrossRefGoogle Scholar
  63. Spokes LJ, Yeatman SG, Cornell SE, Jickells TD (2000) Nitrogen deposition to the eastern Atlantic Ocean. The importance of south-easterly flow. Tellus B Chem Phys Meteorol 52(1):37–49. CrossRefGoogle Scholar
  64. Sullivan RC, Guazzotti SA, Sodeman DA, Prather KA (2006) Direct observations of the atmospheric processing of Asian mineral dust. Atmos Chem Phys Discuss 6(3):4109–4170. CrossRefGoogle Scholar
  65. Tegen I, Fung I (1994). Modeling of mineral dust transport in the atmosphere: Sources, transport, and optical thickness. J Geophys Res 99:22897–22914.
  66. Tegen I, Fung I (1995) Contribution to the atmospheric mineral aerosol load from land surface modification. J Geophys Res 100(D9):18707–18726CrossRefGoogle Scholar
  67. Tegen I, Werner M, Harrison SP, Kohfeld KE (2004) Relative importance of climate and land use in determining present and future global soil dust emission. Geophys Res Lett 31(5):L05105CrossRefGoogle Scholar
  68. Vadrevu KP, Justice C, Prasad T, Prasad N, Gutman G (2015) Land cover/land use change and impacts on environment in South Asia. J Environ Manage 148:1–3CrossRefGoogle Scholar
  69. Vet R, Artz RS, Carou S, Shaw M, Ro CU, Aas W et al (2014) A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmos Environ 93:3–100. CrossRefGoogle Scholar
  70. Wallace JM, Hobbs PV (2006) Atmospheric science: an introductory survey, vol 92. Academic, New YorkGoogle Scholar
  71. Wesely ML, Hicks BB (2000) A review of the current status of knowledge on dry deposition. Atmos Environ 34(12):2261–2282CrossRefGoogle Scholar
  72. Wexler AS, Seinfeld JH (1990) The distribution of ammonium salts among a size and composition dispersed aerosol. Atmos Environ Part A Gen Top 24(5):1231–1246CrossRefGoogle Scholar
  73. WHO (1999) Dust: definitions and concepts. Hazard prevention and control in the work environment: airborne dust, Chapter 1, pp 1–96Google Scholar
  74. Zellweger C, Forrer J, Hofer P, Nyeki S, Schwarzenbach B, Weingartner E et al (2002) Partitioning of reactive nitrogen (NOy) and dependence on meteorological conditions in the lower free troposphere. Atmos Chem Phys Discuss 2(6):2259–2296. CrossRefGoogle Scholar
  75. Zhang J, Shao Y (2014) A new parameterization of particle dry deposition over rough surfaces. Atmos Chem Phys 14(22):12429–12440CrossRefGoogle Scholar
  76. Zhang D, Iwasaka Y, Shi G, Zang J, Matsuki A, Trochkine D (2003) Mixture state and size of Asian dust particles collected at southwestern Japan in spring 2000. J Geophys Res 108(D24):4760CrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  1. 1.School of Environmental Sciences, Jawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations