Skip to main content

How Product Decision Characteristics Interact to Influence Cognitive Load: An Exploratory Study

Part of the Lecture Notes in Information Systems and Organisation book series (LNISO,volume 25)

Abstract

The objective of this laboratory experiment was to explore how product decision characteristics interact to influence the decision-maker’s cognitive load. A between-subject experiment with 23 participants was performed to test how four decision characteristics (Decision set size, Attribute value format, Display format, and Information sorting) interact to influence participants’ cognitive load. Eye-tracking was used to assess cognitive load. Results indicate that the four product decision characteristics interact to influence cognitive load. We found, for example, that as the decision set size increased, the influence of attribute value format, display format, and information sorting on cognitive load varied. Theoretical contributions and managerial implications are discussed.

Keywords

  • Decision characteristics
  • Decision-making
  • Eye-tracking
  • Cognitive load
  • Information display

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-67431-5_7
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-67431-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

References

  1. Payne, J.W., Bettman, J.R., Johnson, E.J.: The Adaptive Decision Maker. Cambridge University Press (1993)

    Google Scholar 

  2. Bearden, W.O., Etzel, M.J.: Reference group influence on product and brand purchase decisions. J. Consum. Res. 9(2), 183–194 (1982)

    CrossRef  Google Scholar 

  3. Alba, J.W., Hutchinson, J.W.: Dimensions of consumer expertise. J. Consum. Res. 13(4), 411–454 (1987)

    CrossRef  Google Scholar 

  4. Malhotra, N.K.: Information load and consumer decision making. J. Consum. Res. 8(4), 419–430 (1982)

    CrossRef  Google Scholar 

  5. Lee, B.K., Lee, W.N.: The effect of information overload on consumer choice quality in an on-line environment. Psychol. Mark. 21(3), 159–183 (2004)

    CrossRef  Google Scholar 

  6. Eppler, M.J., Mengis, J.: The concept of information overload: a review of literature from organization science, accounting, marketing, MIS, and related disciplines. Inf. Soc. 20(5), 325–344 (2004)

    CrossRef  Google Scholar 

  7. Stone, D.N., Schkade, D.A.: Numeric and linguistic information representation in multiattribute choice. Organ. Behav. Hum. Decis. Process. 49(1), 42–59 (1991)

    CrossRef  Google Scholar 

  8. Johnson, E.J., Payne, J.W., Bettman, J.R.: Information displays and preference reversals. Organ. Behav. Hum. Decis. Process. 42(1), 1–21 (1988)

    CrossRef  Google Scholar 

  9. Russo, J.E.: The value of unit price information. J. Mark. Res., pp. 193–201 (1977)

    Google Scholar 

  10. Sweller, J., Van Merrienboer, J.J., Paas, F.G.: Cognitive architecture and instructional design. Educ. Psychol. Rev. 10(3), 251–296 (1998)

    CrossRef  Google Scholar 

  11. Hollender, N., et al.: Integrating cognitive load theory and concepts of human–computer interaction. Comput. Hum. Behav. 26(6), 1278–1288 (2010)

    CrossRef  Google Scholar 

  12. Paas, F., et al.: Cognitive load measurement as a means to advance cognitive load theory. Educ. Psychol. 38(1), 63–71 (2003)

    CrossRef  Google Scholar 

  13. Smeesters, D., Mussweiler, T., Mandel, N.: The effects of thin and heavy media images on overweight and underweight consumers: social comparison processes and behavioral implications. J. Consum. Res. 36(6), 930–949 (2009)

    Google Scholar 

  14. Aljukhadar, M., Senecal, S., Daoust, C.-E.: Using Recommendation Agents to Cope with Information Overload. Int. J. Electron. Commer. 17(2), 41–70 (2012)

    CrossRef  Google Scholar 

  15. Sénécal, S., et al.: Consumers’ cognitive lock-in on websites: evidence from a neurophysiological study. J. Internet Commer. 14(3), 277–293 (2015)

    CrossRef  Google Scholar 

  16. Ortiz de Guinea, A., Titah, R., Léger, P.-M.: Explicit and implicit antecedents of users’ behavioral beliefs in information systems: a neuropsychological investigation. J. Manage. Inf. Syst. 30(4), 179–210 (2014)

    Google Scholar 

  17. Mirhoseini, S.M.M., Léger, P.-M., Sénécal, S.: The Influence of Task Characteristics on Multiple Objective and Subjective Cognitive Load Measures, in Information Systems and Neuroscience, pp. 149–156. Springer, Berlin (2017)

    Google Scholar 

  18. Laeng, B., Sirois, S., Gredebäck, G.: Pupillometry a window to the preconscious? Perspect. Psychol. Sci. 7(1), 18–27 (2012)

    CrossRef  Google Scholar 

  19. Riedl, R., Léger, P.-M.: Fundamentals of NeuroIS. Springer, Berlin (2016)

    Google Scholar 

  20. Riedl, R., Brandstätter, E., Roithmayr, F.: Identifying decision strategies: a process-and outcome-based classification method. Behav. Res. Methods 40(3), 795–807 (2008)

    CrossRef  Google Scholar 

  21. Pfeiffer, J., et al.: On the influence of context-based complexity on information search patterns: An individual perspective. J. Neurosci. Psychol. Econom. 7(2), 103 (2014)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Sénécal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Sénécal, S., Léger, PM., Riedl, R., Davis, F.D. (2018). How Product Decision Characteristics Interact to Influence Cognitive Load: An Exploratory Study. In: Davis, F., Riedl, R., vom Brocke, J., Léger, PM., Randolph, A. (eds) Information Systems and Neuroscience. Lecture Notes in Information Systems and Organisation, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-319-67431-5_7

Download citation