Skip to main content

On the Role of Users’ Cognitive-Affective States for User Assistance Invocation

Part of the Lecture Notes in Information Systems and Organisation book series (LNISO,volume 25)

Abstract

User assistance systems are often invoked automatically based on simple triggers (e.g., the assistant pops up after the user has been idle for some time) or they require users to invoke them manually. Both invocation modes have their weaknesses. Therefore, we argue that, ideally, the assistance should be invoked intelligently based on the users’ actual need for assistance. In this paper, we propose a research project investigating the role of users’ cognitive-affective states when providing assistance using NeuroIS measurements. Drawing on the theoretical foundations of the Attentional Control Theory, we propose an experiment that helps to understand how cognitive-affective states can serve as indicators for the best point of time for the invocation of user assistance systems. The research described in this paper will ultimately help to design intelligent invocation of user assistance systems.

Keywords

  • Assistance
  • Invocation
  • NeuroIS
  • Attentional control theory
  • Cognitive-affective user states
  • Affect
  • Mental effort

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-67431-5_5
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-67431-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)

References

  1. Mou, Y., Xu, K.: The media inequality: comparing the initial human–human and human–AI social interactions. Comput. Hum. Behav. 72, 432–440 (2017)

    CrossRef  Google Scholar 

  2. Sarikaya, R.: The technology behind personal digital assistants: an overview of the system architecture and key components. IEEE Sig. Process. Mag. 34, 67–81 (2017)

    CrossRef  Google Scholar 

  3. Baig, E.C.: Personal digital assistants are on the rise (and they want to talk). http://www.usatoday.com/story/tech/columnist/baig/2016/05/08/personal-digital-assistants-rise-and-they-want-talk/83715794/

  4. Maedche, A., Morana, S., Schacht, S., Werth, D., Krumeich, J.: Advanced user assistance systems. Bus. Inf. Syst. Eng. 58, 2–5 (2016)

    Google Scholar 

  5. Veletsianos, G.: Cognitive and affective benefits of an animated pedagogical agent: considering contextual relevance and aesthetics. J. Educ. Comput. Res. 36, 373–377 (2007)

    CrossRef  Google Scholar 

  6. Liao, W., Zhang, W., Zhu, Z., Ji, Q., Gray, W.D.: Toward a decision-theoretic framework for affect recognition and user assistance. Int. J. Hum. Comput. Stud. 64, 847–873 (2006)

    CrossRef  Google Scholar 

  7. Parasuraman, R., Wilson, G.F.: Putting the brain to work: neuroergonomics past, present, and future. Hum. Factors 50, 468–474 (2008)

    CrossRef  Google Scholar 

  8. Vom Brocke, J., Riedl, R., Léger, P.-M.: Application strategies for neuroscience in information systems design science research. J. Comput. Inf. Syst. 53, 1–13 (2013)

    Google Scholar 

  9. Silver, M.S.: On the design features of decision support systems: the role of system restrictiveness and decisional guidance. In: Handbook on Decision Support Systems 2: Variations. pp. 261–293. Springer, Berlin, Heidelberg (2008)

    Google Scholar 

  10. Gregor, S., Benbasat, I.: Explanations from intelligent systems: theoretical foundations and implications for practice. MIS Q. 23, 497–530 (1999)

    CrossRef  Google Scholar 

  11. Horvitz, E., Breese, J., Heckerman, D., Hovel, D., Rommelse, K.: The lumiere project: bayesian user modeling for inferring the goals and needs of software users. In: Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, pp. 256–265 (1998)

    Google Scholar 

  12. Antwarg, L., Lavie, T., Rokach, L., Shapira, B., Meyer, J.: Highlighting items as means of adaptive assistance. Behav. Inf. Technol. 32, 1–17 (2012)

    Google Scholar 

  13. Schiaffino, S., Amandi, A.: Polite personal agents. IEEE Intell. Syst. 21, 12–19 (2006)

    CrossRef  Google Scholar 

  14. Babin, L.M., Tricot, A., Mariné, C.: Seeking and providing assistance while learning to use information systems. Comput. Educ. 53, 1029–1039 (2009)

    CrossRef  Google Scholar 

  15. Novick, D.G., Elizalde, E., Bean, N.: Toward a more accurate view of when and how people seek help with computer applications. In: ACM 25th International Conference on Design of Communication, pp. 95–102 (2007)

    Google Scholar 

  16. Ginon, B., Stumpf, S., Jean-Daubias, S.: Towards the right assistance at the right time for using complex interfaces. In: Proceedings of the International Working Conference on Advanced Visual Interfaces—AVI ’16. pp. 240–43. ACM Press, New York (2016)

    Google Scholar 

  17. McFarlane, D., Latorella, K.: The scope and importance of human interruption in human-computer interaction design. Hum. Comput. Interact. 17, 1–61 (2002)

    CrossRef  Google Scholar 

  18. Morana, S., Schacht, S., Scherp, A., Maedche, A.: A review of the nature and effects of guidance design features. Decis. Support Syst. 97, 31–42 (2017)

    CrossRef  Google Scholar 

  19. Baker, R.S.J., D’Mello, S.K., Rodrigo, M.M.T., Graesser, A.C.: Better to be frustrated than bored: the incidence, persistence, and impact of learners’ cognitive-affective states during interactions with three different computer-based learning environments. Int. J. Hum. Comput. Stud. 68, 223–241 (2010)

    Google Scholar 

  20. Eysenck, M.W., Derakshan, N., Santos, R., Calvo, M.G.: Anxiety and cognitive performance: attentional control theory. Emotion 7, 336–353 (2007)

    CrossRef  Google Scholar 

  21. Klein, J., Moon, Y., Picard, R.W.: This computer responds to user frustration: theory, design, and results. Interact. Comput. 14, 119–140 (2002)

    CrossRef  Google Scholar 

  22. Picard, R.W.: Affective computing: challenges. Int. J. Hum. Comput. Stud. 59, 55–64 (2003)

    CrossRef  Google Scholar 

  23. Fairclough, S.H.: Fundamentals of physiological computing. Interact. Comput. 21, 133–145 (2009)

    CrossRef  Google Scholar 

  24. Fehrenbacher, D.D., Djamasbi, S.: Information systems and task demand: an exploratory pupillometry study of computerized decision making. Decis. Support Syst. 97, 1–11 (2017)

    Google Scholar 

  25. Yorke-Smith, N., Saadati, S., Myers, K.L., Morley, D.N.: The design of a proactive personal agent for task management. Int. J. Artif. Intell. Tools 21, 1250004-1-30 (2012)

    Google Scholar 

  26. Dimoka, A., Banker, R.D., Benbasat, I., Davis, F.D., Dennis, A.R., Gefen, D., Gupta, A., Ischebeck, A., Kenning, P., Pavlou, P.A., Müller-Putz, G.R., Riedl, R., vom Brocke, J., Weber, B.: On the use of neuropyhsiological tools in is research: developing a research agenda for NeuroIS. MIS Q. 36, 679–702 (2012)

    Google Scholar 

  27. Liang, T.-P., vom Brocke, J.: Special issue: neuroscience in information systems research. J. Manage. Inf. Syst. 30, 7–12 (2014)

    Google Scholar 

  28. Bailey, B.P., Konstan, J.A.: On the need for attention-aware systems: measuring effects of interruption on task performance, error rate, and affective state. Comput. Hum. Behav. 22, 685–708 (2006)

    CrossRef  Google Scholar 

  29. Adamczyk, P.D., Bailey, B.P.: If not now when? the effects of interruption at different moments within task execution. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, vol. 6, pp. 271–278 (2004)

    Google Scholar 

  30. Speier, C., Valacich, J.S., Vessey, I.: The influence of task interruption on individual decision making: an information overload perspective. Decis. Sci. 30, 337–360 (1999)

    CrossRef  Google Scholar 

  31. LeeTiernan, S., Cutrell, E.B., Czerwinski, M., Hoffman, H.: Effective notification systems depend on user trust. In: Human-Computer Interaction—INTERACT 2001 Conference Proceedings, pp. 684–685 (2001)

    Google Scholar 

  32. Wang, J., Wang, Y., Wang, Y.: CAPFF: A context-aware assistant for paper form filling. IEEE Trans. Hum. Mach. Syst. 1–6 (2016)

    Google Scholar 

  33. Hudlicka, E.: To feel or not to feel: the role of affect in human–computer interaction. Int. J. Hum. Comput. Stud. 59, 1–32 (2003)

    CrossRef  Google Scholar 

  34. Liao, W., Zhang, W., Zhu, Z., Ji, Q.: A decision theoretic model for stress recognition and user assistance. In: Proceedings of Twentieth National Conference on Artificial Intelligence. Seventeenth Innovative Applications of Artificial Intelligence Conference, pp. 529–534 (2005)

    Google Scholar 

  35. Li, X., Ji, Q.: Active affective state detection and user assistance with dynamic bayesian networks. IEEE Trans. Syst. Man Cybern. Syst. Hum. 35, 93–105 (2005)

    Google Scholar 

  36. Riedl, R., Davis, F.D., Hevner, A.R.: Towards a NeuroIS research methodology: intensifying the discussion on methods, tools, and measurement. J. Assoc. Inf. Syst. 15, i–xxxv (2014)

    Google Scholar 

  37. Ellis, S., Tyre, M.J.: Helping relations between technology users and developers: a vignette study. IEEE Trans. Eng. Manage. 48, 56–69 (2001)

    CrossRef  Google Scholar 

  38. Riedl, R., Léger, P.-M.: Fundamentals of NeuroIS—Information Systems and the Brain, Springer, Berlin (2016)

    Google Scholar 

  39. Dong, J., Yang, H.I., Oyama, K., Chang, C.K.: Human desire inference process based on affective computing. In: Proceedings of International Computer Software and Applications Conference, pp. 347–350 (2010)

    Google Scholar 

  40. Frank, K., Robertson, P., Gross, M., Wiesner, K.: Sensor-based identification of human stress levels. In: 2013 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops, pp. 127–32 (2013)

    Google Scholar 

  41. Gregor, S., Lin, A.C.H., Gedeon, T., Riaz, A., Zhu, D.: Neuroscience and a nomological network for the understanding and assessment of emotions in information systems research. J. Manage. Inf. Syst. 30, 13–48 (2014)

    CrossRef  Google Scholar 

  42. Hibbeln, M., Jenkins, J.L., Schneider, C., Valacich, J.S., Weinmann, M.: How is your user feeling? Inferring emotion trough human-computer interaction devices. MIS Q. 41, 1–22 (2017)

    CrossRef  Google Scholar 

  43. Brown, J.S., Farber, I.E.: Emotions conceptualized as intervening variables—with suggestions toward a theory of frustration. Psychol. Bull. 48, 465–495 (1951)

    CrossRef  Google Scholar 

  44. Eysenck, M.W., Derakshan, N.: New perspectives in attentional control theory. Pers. Individ. Differ. 50, 955–960 (2011)

    CrossRef  Google Scholar 

  45. Anderson, B.B., Vance, A., Kirwan, C.B., Eargle, D., Jenkins, J.L.: How users perceive and respond to security messages: a NeuroIS research agenda and empirical study. Eur. J. Inf. Syst. 2016, 1–27 (2016)

    Google Scholar 

  46. Nass, C., Brave, S.: Emotion in human–computer interaction. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 77–92 (2007)

    Google Scholar 

  47. Scheirer, J., Fernandez, R., Klein, J., Picard, R.W.: Frustrating the user on purpose: a step toward building an affective computer. Interact. Comput. 14, 93–118 (2002)

    CrossRef  Google Scholar 

  48. Ekman, P.: Facial expression and emotion. Am. Psychol. 48, 384–392 (1993)

    CrossRef  Google Scholar 

  49. D’Mello, S., Graesser, A.: The half-life of cognitive-affective states during complex learning. Cogn. Emot. 25, 1299–1308 (2011)

    CrossRef  Google Scholar 

  50. Schlenker, B.R., Leary, M.R.: Social anxiety and self-presentation: a conceptualization and model. Psychol. Bull. 92, 641–669 (1982)

    CrossRef  Google Scholar 

  51. Sweller, J., van Merrienboer, J., Paas, F.: Cognitive architecture and instructional design. Educ. Psychol. Rev. 10, 251–296 (1998)

    CrossRef  Google Scholar 

  52. Peavler, S.W.: Pupil size, information overload and performance differences. Psychophysiology 11, 559–566 (1974)

    CrossRef  Google Scholar 

  53. Paas, F., Van Merrienboer, J.J.G.: The efficiency of instructional conditions: an approach to combine mental effort and performance measures. Hum. Factors 35, 737–743 (1993)

    CrossRef  Google Scholar 

  54. Folkman, S., Moskowitz, J.T.: Positive affect and the other side of coping. Am. Psychol. 55, 647–654 (2000)

    CrossRef  Google Scholar 

  55. Beaudry, A., Pinsonneault, A.: Understanding user responses to information technology: a coping model of user adaptation. MIS Q. 29, 493–524 (2005)

    Google Scholar 

  56. Haapalainen, E., Kim, S., Forlizzi, J.F., Dey, A.K.: Psycho-physiological measures for assessing cognitive load. In: Proceedings of the 12th ACM International Conference on Ubiquitous Computing, pp. 301–310 (2010)

    Google Scholar 

  57. Mirhoseini, S.M.M., Léger, P.-M., Sénécal, S.: The influence of task characteristics on multiple objective and subjective cognitive load measures. Presented at the information systems and neuroscience, Springer, Berlin (2017)

    Google Scholar 

  58. Jenkins, J.L., Anderson, B.B., Vance, A., Kirwan, C.B., Eargle, D.: More harm than good? how messages that interrupt can make us vulnerable. Inf. Syst. Res. 27(4), 880–896 (2016)

    Google Scholar 

  59. Léger, P.M., Titah, R., Sénecal, S., Fredette, M., Courtemanche, F., Labonte-Lemoyne, É., De Guinea, A.O.: Precision is in the eye of the beholder: application of eye fixation-related potentials to information systems research. J. Assoc. Inf. Syst. 15, 651–678 (2014)

    Google Scholar 

  60. Jung, N., Wranke, C., Hamburger, K., Knauff, M.: How emotions affect logical reasoning: evidence from experiments with mood-manipulated participants, spider phobics, and people with exam anxiety. Front. Psychol. 5 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celina Friemel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Friemel, C., Morana, S., Pfeiffer, J., Maedche, A. (2018). On the Role of Users’ Cognitive-Affective States for User Assistance Invocation. In: Davis, F., Riedl, R., vom Brocke, J., Léger, PM., Randolph, A. (eds) Information Systems and Neuroscience. Lecture Notes in Information Systems and Organisation, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-319-67431-5_5

Download citation