Skip to main content

Constructing a Consensus Phylogeny from a Leaf-Removal Distance (Extended Abstract)

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10508))

Abstract

Understanding the evolution of a set of genes or species is a fundamental problem in evolutionary biology. The problem we study here takes as input a set of trees describing possibly discordant evolutionary scenarios for a given set of genes or species, and aims at finding a single tree that minimizes the leaf-removal distance to the input trees. This problem is a specific instance of the general consensus/supertree problem, widely used to combine or summarize discordant evolutionary trees. The problem we introduce is specifically tailored to address the case of discrepancies between the input trees due to the misplacement of individual taxa. Most supertree or consensus tree problems are computationally intractable, and we show that the problem we introduce is also NP-hard. We provide tractability results in form of a 2-approximation algorithm and a parameterized algorithm with respect to the number of removed leaves. We also introduce a variant that minimizes the maximum number d of leaves that are removed from any input tree, and provide a parameterized algorithm for this problem with parameter d.

All missing proofs are provided in [6].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    All trees we consider here are uniquely leaf-labeled, rooted (i.e. are out-trees) and binary; see next section for formal definitions.

References

  1. Aberer, A.J., Krompass, D., Stamatakis, A.: Pruning rogue taxa improves phylogenetic accuracy: an efficient algorithm and webservice. Syst. Biol. 62(1), 162–166 (2013). http://dx.doi.org/10.1093/sysbio/sys078

    Article  Google Scholar 

  2. Amir, A., Keselman, D.: Maximum agreement subtree in a set of evolutionary trees: metrics and efficient algorithms. SIAM J. Comput. 26, 1656–1669 (1997). http://dx.doi.org/10.1137/S0097539794269461

    Article  MathSciNet  MATH  Google Scholar 

  3. Bryant, D.: Building trees, hunting for trees, and comparing trees. Ph.D. thesis, Bryant University (1997)

    Google Scholar 

  4. Bryant, D., McKenzie, A., Steel, M.: The size of a maximum agreement subtree for random binary trees. Dimacs Ser. Discrete Math. Theor. Comput. Sci. 61, 55–66 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Byrka, J., Guillemot, S., Jansson, J.: New results on optimizing rooted triplets consistency. Discrete Appl. Math. 158, 1136–1147 (2010). http://dx.doi.org/10.1016/j.dam.2010.03.004

    Article  MathSciNet  MATH  Google Scholar 

  6. Chauve, C., Jones, M., Lafond, M., Scornavacca, C., Weller, M.: Constructing a consensus phylogeny from a leaf-removal distance. http://arxiv.org/abs/1705.05295

  7. Chester, A., Dondi, R., Wirth, A.: Resolving rooted triplet inconsistency by dissolving multigraphs. In: Hubert Chan, T.-H., Lau, L.C., Trevisan, L. (eds.) TAMC 2013. LNCS, vol. 7876, pp. 260–271. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38236-9_24

    Chapter  Google Scholar 

  8. Cole, R., Farach-Colton, M., Hariharan, R., Przytycka, T.M., Thorup, M.: An O(nlog n) algorithm for the maximum agreement subtree problem for binary trees. SIAM J. Comput. 30, 1385–1404 (2000). http://dx.doi.org/10.1137/S0097539796313477

    Article  MathSciNet  MATH  Google Scholar 

  9. Deng, Y., Fernández-Baca, D.: Fast compatibility testing for rooted phylogenetic trees. In: Leibniz International Proceedings of Information, Combinatorial Pattern Matching, LIPIcs, vol. 54, pp. 12:1–12:12 (2016). http://drops.dagstuhl.de/opus/volltexte/2016/6088

  10. Fernández-Baca, D., Guillemot, S., Shutters, B., Vakati, S.: Fixed-parameter algorithms for finding agreement supertrees. SIAM J. Comput. 44, 384–410 (2015). http://dx.doi.org/10.1137/120897559

    Article  MathSciNet  MATH  Google Scholar 

  11. Guillemot, S., Mnich, M.: Kernel and fast algorithm for dense triplet inconsistency. Theoret. Comput. Sci. 494, 134–143 (2013). http://dx.doi.org/10.1016/j.tcs.2012.12.032

    Article  MathSciNet  MATH  Google Scholar 

  12. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  13. Hellmuth, M., Wieseke, N., Lechner, M., Lenhof, H.P., Middendorf, M., Stadler, P.F.: Phylogenomics with paralogs. Proc. Natl. Acad. Sci. USA 112, 2058–2063 (2015). http://dx.doi.org/10.1073/pnas.1412770112

    Article  Google Scholar 

  14. Jarvis, E.D., et al.: Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346, 1320–1331 (2014). http://dx.doi.org/10.1126/science.1253451

    Article  Google Scholar 

  15. Scornavacca, C., Galtier, N.: Incomplete lineage sorting in Mammalian phylogenomics. Syst. Biol. 66, 112–120 (2017). http://dx.doi.org/10.1093/sysbio/syw082

  16. Scornavacca, C., Jacox, E., Szollösi, G.J.: Joint amalgamation of most parsimonious reconciled gene trees. Bioinformatics 31, 841–848 (2015). http://dx.doi.org/10.1093/bioinformatics/btu728

    Article  Google Scholar 

  17. Szollösi, G.J., Boussau, B., Abby, S.S., Tannier, E., Daubin, V.: Phylogenetic modeling of lateral gene transfer reconstructs the pattern and relative timing of speciations. Proc. Natl. Acad. Sci. USA 109, 17513–17518 (2012). http://dx.doi.org/10.1073/pnas.1202997109

    Article  Google Scholar 

  18. Vachaspati, P., Warnow, T.: FastRFS: fast and accurate Robinson-Foulds supertrees using constrained exact optimization. Bioinformatics 33, 631–639 (2017). http://dx.doi.org/10.1093/bioinformatics/btw600

    Google Scholar 

  19. Whidden, C., Zeh, N., Beiko, R.G.: Supertrees based on the subtree prune-and-regraft distance. Syst. Biol. 63, 566–581 (2014). http://dx.doi.org/10.1093/sysbio/syu023

Download references

Acknowledgements

MJ was partially supported by Labex NUMEV (ANR-10-LABX-20) and Vidi grant 639.072.602 from The Netherlands Organization for Scientific Research (NWO). CC was supported by NSERC Discovery Grant 249834. CS was partially supported by the French Agence Nationale de la Recherche Investissements d’Avenir/Bioinformatique (ANR-10-BINF-01-01, ANR-10-BINF-01-02, Ancestrome). ML was supported by NSERC PDF Grant. MW was partially supported by the Institut de Biologie Computationnelle (IBC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chauve, C., Jones, M., Lafond, M., Scornavacca, C., Weller, M. (2017). Constructing a Consensus Phylogeny from a Leaf-Removal Distance (Extended Abstract). In: Fici, G., Sciortino, M., Venturini, R. (eds) String Processing and Information Retrieval. SPIRE 2017. Lecture Notes in Computer Science(), vol 10508. Springer, Cham. https://doi.org/10.1007/978-3-319-67428-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67428-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67427-8

  • Online ISBN: 978-3-319-67428-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics