Efficient Compression and Indexing of Trajectories

  • Nieves R. Brisaboa
  • Travis Gagie
  • Adrián Gómez-Brandón
  • Gonzalo Navarro
  • José R. Paramá
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10508)


We present a new compressed representation of free trajectories of moving objects. It combines a partial-sums-based structure that retrieves in constant time the position of the object at any instant, with a hierarchical minimum-bounding-boxes representation that allows determining if the object is seen in a certain rectangular area during a time period. Combined with spatial snapshots at regular intervals, the representation is shown to outperform classical ones by orders of magnitude in space, and also to outperform previous compressed representations in time performance, when using the same amount of space.


  1. 1.
    Brisaboa, N.R., Fariña, A., Navarro, G., Param, J.R.: Lightweight natural language text compression. Inf. Retrieval 10(1), 1–33 (2007)CrossRefGoogle Scholar
  2. 2.
    Brisaboa, N.R., Ladra, S., Navarro, G.: Compact representation of web graphs with extended functionality. Inf. Syst. 39(1), 152–174 (2014)CrossRefGoogle Scholar
  3. 3.
    Brisaboa, N.R., Gómez-Brandón, A., Navarro, G., Paramá, J.R.: GraCT: a grammar based compressed representation of trajectories. In: Inenaga, S., Sadakane, K., Sakai, T. (eds.) SPIRE 2016. LNCS, vol. 9954, pp. 218–230. Springer, Cham (2016). doi: 10.1007/978-3-319-46049-9_21 CrossRefGoogle Scholar
  4. 4.
    Chakka, V.P., Everspaugh, A., Patel, J.M.: Indexing large trajectory data sets with SETI. In: CIDR (2003)Google Scholar
  5. 5.
    Clark, D.: Compact Pat Trees. Ph.D. thesis, Univ. Waterloo (1996)Google Scholar
  6. 6.
    Cudre-Mauroux, P., Wu, E., Madden, S.: Trajstore: an adaptive storage system for very large trajectory data sets. In: ICDE, pp. 109–120 (2010)Google Scholar
  7. 7.
    Douglas, D.H., Peuker, T.K.: Algorithms for the reduction of the number of points required to represent a line or its caricature. Can. Cartogr. 10(2), 112–122 (1973)CrossRefGoogle Scholar
  8. 8.
    Elias, P.: Efficient storage and retrieval by content and address of static files. J. ACM 21, 246–260 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fano, R.: On the number of bits required to implement an associative memory. Memo 61, Computer Structures Group, Project MAC, Massachusetts (1971)Google Scholar
  10. 10.
    Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: plug and play with succinct data structures. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 326–337. Springer, Cham (2014). doi: 10.1007/978-3-319-07959-2_28 Google Scholar
  11. 11.
    Larsson, N.J., Moffat, A.: Off-line dictionary-based compression. Proc. IEEE 88(11), 1722–1732 (2000)CrossRefGoogle Scholar
  12. 12.
    Nibali, A., He, Z.: Trajic: an effective compression system for trajectory data. IEEE Trans. Knowl. Data Eng. 27(11), 3138–3151 (2015)CrossRefGoogle Scholar
  13. 13.
    Okanohara, D., Sadakane, K.: Practical entropy-compressed rank/select dictionary. In: ALENEX, pp. 60–70 (2007)Google Scholar
  14. 14.
    Pfoser, D., Jensen, C.S., Theodoridis, Y.: Novel approaches to the indexing of moving object trajectories. In: VLDB, pp. 395–406 (2000)Google Scholar
  15. 15.
    Samet, H.: Foundations of Multimensional and Metric Data Structures. Morgan Kaufmann, Burlington (2006)zbMATHGoogle Scholar
  16. 16.
    Tao, Y., Papadias, D.: MV3R-tree: A spatio-temporal access method for timestamp and interval queries. In: VLDB. pp. 431–440 (2001)Google Scholar
  17. 17.
    Trajcevski, G., Cao, H., Scheuermann, P., Wolfson, O., Vaccaro, D.: On-line data reduction and the quality of history in moving objects databases. In: MobiDE, pp. 19–26 (2006)Google Scholar
  18. 18.
    Vazirgiannis, M., Theodoridis, Y., Sellis, T.K.: Spatio-temporal composition and indexing for large multimedia applications. ACM Multimedia Syst. J. 6(4), 284–298 (1998)CrossRefGoogle Scholar
  19. 19.
    Wang, H., Zheng, K., Xu, J., Zheng, B., Zhou, X., Sadiq, S.: Sharkdb: an in-memory column-oriented trajectory storage. In: CIKM, pp. 1409–1418 (2014)Google Scholar
  20. 20.
    Zheng, Y., Zhou, X. (eds.): Computing with Spatial Trajectories. Springer, New York (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Nieves R. Brisaboa
    • 1
  • Travis Gagie
    • 2
  • Adrián Gómez-Brandón
    • 1
  • Gonzalo Navarro
    • 3
  • José R. Paramá
    • 1
  1. 1.Computer Science DeparmentUniversidade da CoruñaA CoruñaSpain
  2. 2.School of Informatics and TelecommunicationsDiego Portales UniversitySantiagoChile
  3. 3.Department of Computer ScienceUniversity of ChileSantiagoChile

Personalised recommendations