Multiparty Interactions for Coordination in a Mixed Human-Agent Teamwork

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10498)


Virtual environments for human learning enable one or more users to interact with virtual agents in order to perform their tasks. This collaboration necessitates that the members of the team share a set of beliefs and reason about resources, plans and actions to be implemented. This article introduces a new multiparty coordination model allowing several virtual and human agents to dialogue and reason about the tasks that the user must learn. The proposed model relies on a shared plan based approach to represent the beliefs of the team members. The management of the multiparty aspect makes it possible to differentiate the behaviors to be produced according to the type of receiver of a communication: recipient or listener. Finally, in the context of learning a procedural activity, a study examines the effect of our multiparty model on a learner. Results show that the use of proactive pedagogical agents with multiparty competencies boosts the construction of common beliefs.


Virtual agents Virtual environment Human-agent interaction Teamwork Collaboration Multiparty interaction protocol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ales, Z., Pauchet, A., Knippel, A.: Extraction de motifs dialogiques bidimensionnels. Revue d’intelligence Artificielle 29(6), 655–684 (2015)CrossRefGoogle Scholar
  2. 2.
    Barange, M.: Task-Oriented Communicative Capabilities of Agents in Collaborative Virtual Environments for Training. Thesis, UBO, Brest, France (2015)Google Scholar
  3. 3.
    Bohus, D., Horvitz, E.: Multiparty turn taking in situated dialog: study, lessons, and directions. In: SIGDIAL, pp. 98–109 (2011)Google Scholar
  4. 4.
    Cao, Y., Yu, W., Ren, W., Chen, G.: An overview of recent progress in the study of distributed multi-agent coordination. Transactions on Industrial Informatics 9(1), 427–438 (2013)CrossRefGoogle Scholar
  5. 5.
    Chevaillier, P., Trinh, T.H., Barange, M., Devillers, F., Soler, J., De Loor, P., Querrec, R.: Semantic modelling of virtual environments using MASCARET. In: SEARIS, Singapore (2011)Google Scholar
  6. 6.
    Cohen, P.R., Levesque, H.J.: Confirmations and joint action. In: IJCAI, pp. 951–957 (1991)Google Scholar
  7. 7.
    Dillenbourg, P., Schneider, D., Synteta, P.: Virtual learning environments. In: 3rd Hellenic Conference on Information & Communication Technologies in Education, pp. 3–18. Kastaniotis Editions, Greece (2002)Google Scholar
  8. 8.
    Dugdale, J., Pavard, J., Soubie, B.: A pragmatic development of a computer simulation of an emergency call center. In: COOP, pp. 241–256 (2000)Google Scholar
  9. 9.
    Dunin-Kęplicz, B., Verbrugge, R.: A logical view on teamwork. In: Eijck, J., Verbrugge, R. (eds.) Games, Actions and Social Software. LNCS, vol. 7010, pp. 184–212. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-29326-9_10CrossRefGoogle Scholar
  10. 10.
    Grosz, B.J., Kraus, S.: Collaborative plans for complex group action. Artificial Intelligence 86(2), 269–357 (1996)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Jégou, M., Lefebvre, L., Chevaillier, P.: A continuous model for the management of turn-taking in user-agent spoken interactions based on the variations of prosodic signals. In: Brinkman, W.-P., Broekens, J., Heylen, D. (eds.) IVA 2015. LNCS, vol. 9238, pp. 389–398. Springer, Cham (2015). doi: 10.1007/978-3-319-21996-7_42CrossRefGoogle Scholar
  12. 12.
    Johnson, M., Bradshaw, J.M., Feltovich, P.J., Jonker, C.M., Van Riemsdijk, M.B., Sierhuis, M.: Coactive design: Designing support for interdependence in joint activity. Journal of Human-Robot Interaction 3(1), 43–69 (2014)CrossRefGoogle Scholar
  13. 13.
    Kamali, K., Fan, X., Yen, J.: Formal semantics for multiparty proactive communication in agent teams. In: Advances in Agent Communication. LNAI (2006)Google Scholar
  14. 14.
    Kumar, S., Huber, M.J., McGee, D., Cohen, P.R., Levesque, H.J.: Semantics of agent communication languages for group interaction. In: AAAI, pp. 42–47 (2000)Google Scholar
  15. 15.
    Levesque, H.J., Cohen, P.R., Nunes, J.H.T.: On acting together. In: AAAI, pp. 94–99 (1990)Google Scholar
  16. 16.
    Panzarasa, P., Jennings, N.R., Norman, T.J.: Formalizing collaborative decision-making and practical reasoning in multi-agent systems. Journal of Logic and Computation 12(1), 55–117 (2002)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Pelachaud, C.: Modelling multimodal expression of emotion in a virtual agent. Philosophical Transactions of the Royal Society of London B: Biological Sciences 364(1535), 3539–3548 (2009)CrossRefGoogle Scholar
  18. 18.
    Rich, C., Sidner, C.L.: Diamondhelp: A generic collaborative task guidance system. AI Magazine 28(2), 33 (2007)Google Scholar
  19. 19.
    Rich, C., Sidner, C.L., Lesh, N.: Collagen: applying collaborative discourse theory to human-computer interaction. AI Mag. 22(4), 15–25 (2001)Google Scholar
  20. 20.
    Saunier, J., Balbo, F., Pinson, S.: A formal model of communication and context awareness in multiagent systems. Journal of Logic, Language and Information 23(2), 219–247 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Saunier, J., Barange, M., Blandin, B., Querrec, R.: A methodology for the design of pedagogically adaptable learning environments. The International Journal of Virtual Reality IJVR 16(01), 15–21 (2016)Google Scholar
  22. 22.
    Sierhuis, M., Bradshaw, J.M., Acquisti, A., Hoof, R.V., Jeffers, R., Uszok, A.: Human-agent teamwork and adjustable autonomy in practice. In: I-SAIRAS (2003)Google Scholar
  23. 23.
    Tambe, M.: Towards flexible teamwork. Journal of Artificial Intelligence Research 7, 83–124 (1997)CrossRefGoogle Scholar
  24. 24.
    Traum, D., Rickel, J.: Embodied agents for multi-party dialogue in immersive virtual worlds. In: AAMAS, pp. 766–773. ACM Press (2002)Google Scholar
  25. 25.
    Wooldridge, M., Jennings, N.R.: The cooperative problem-solving process. J. of Logic and Computation 9(4), 563–592 (1999)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Zhang, Y., Ioerger, T.R., Volz, R.A.: Decision-theoretic proactive communication in multiagent teamwork. In: 2005 IEEE International Conference on Systems, Man and Cybernetics, vol. 4, pp. 3903–3908. IEEE (2005)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Normandie Univ, INSA Rouen, LITISRouenFrance

Personalised recommendations