Advertisement

Predicting Future Crowd Motion Including Event Treatment

  • Cliceres Mack Dal Bianco
  • Soraia Raupp Musse
  • Adriana Braun
  • Rodrigo Poli Caetani
  • Claudio Jung
  • Norman Badler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10498)

Abstract

Crowd simulation has become an important area, mainly in entertainment and security applications. In particular, this area has been explored in safety systems to evaluate environments in terms of people comfort and security. In general, the evaluation involves the execution of one or more simulations in order to provide statistical information about the crowd behavior in a certain environment. Real-time applications can also be desirable, for instance in order to estimate the crowd behavior in a near future knowing the current crowd state, aiming to anticipate a potential problem and prevent it. This paper presents a model to estimate crowd behaviors in a future time, presenting a good compromise between accuracy and running time. It also presents a new error measure to compare two crowds based on local density.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Almeida, I.R., Cassol, V.J., Badler, N.I., Musse, S.R., Jung, C.R.: Detection of global and local motion changes in human crowds. IEEE Transactions on Circuits and Systems for Video Technology 27(3), 603–612 (2017)CrossRefGoogle Scholar
  2. 2.
    Bianco, C.M.D., Braun, A., Musse, S.R., Jung, C., Badler, N.: Fast-forwarding crowd simulations. In: Traum, D., Swartout, W., Khooshabeh, P., Kopp, S., Scherer, S., Leuski, A. (eds.) IVA 2016. LNCS, vol. 10011, pp. 208–217. Springer, Cham (2016). doi: 10.1007/978-3-319-47665-0_19 CrossRefGoogle Scholar
  3. 3.
    Dal Bianco, C.M., Braun, A., Brasil, J., Musse, S.R.: Preserving the motion features in nonavoiding collision crowds. Comput. Entertain 15(3), 2:1–2:15 (2017)Google Scholar
  4. 4.
    Lerner, A., Chrysanthou, Y., Shamir, A., Cohen-Or, D.: Data driven evaluation of crowds. In: Egges, A., Geraerts, R., Overmars, M. (eds.) MIG 2009. LNCS, vol. 5884, pp. 75–83. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-10347-6_7 CrossRefGoogle Scholar
  5. 5.
    Van Toll, W.G., Cook, A.F., Geraerts, R.: Real-time density-based crowd simulation. Comput. Animat. Virtual Worlds 23(1), 59–69 (2012)Google Scholar
  6. 6.
    Yi, S., Li, H., Wang, X.: Pedestrian travel time estimation in crowded scenes. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 3137–3145, December 2015Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Cliceres Mack Dal Bianco
    • 1
  • Soraia Raupp Musse
    • 1
  • Adriana Braun
    • 1
  • Rodrigo Poli Caetani
    • 1
  • Claudio Jung
    • 2
  • Norman Badler
    • 3
  1. 1.Graduate Program in Computer SciencePontifical Catholic University of Rio Grande Do Sul - PUCRSPorto AlegreBrazil
  2. 2.Graduate Program in Computer ScienceFederal University of Rio Grande Do Sul - UFRGSPorto AlegreBrazil
  3. 3.University of Pennsylvania - UPENNPhiladelphiaUSA

Personalised recommendations