Proofs Versus Experiments: Wittgensteinian Themes Surrounding the Four-Color Theorem

Chapter
Part of the Synthese Library book series (SYLI, volume 388)

Abstract

The Four-Colour Theorem (4CT) proof, presented to the mathematical community in a pair of papers by Appel and Haken in the late 1970s, provoked a series of philosophical debates. Many conceptual points of these disputes still require some elucidation. After a brief presentation of the main ideas of Appel and Haken’s procedure for the proof and a reconstruction of Thomas Tymoczko’s argument for the novelty of 4CT’s proof, we shall formulate some questions regarding the connections between the points raised by Tymoczko and some wittgensteinian topics in the philosophy of mathematics such as the importance of the surveyability as a criterion for distinguishing mathematical proofs from empirical experiments. Our aim is to show that the “characteristic Wittgensteinian invention” (Mühlhölzer 2006) – the strong distinction between proofs and experiments – can shed some light in the conceptual confusions surrounding the Four-Colour Theorem.

References

  1. Appel, K. (1976, October 21). The proof of the four-color theorem. New Scientist. 154–155.Google Scholar
  2. Appel, K. (1984). The use of the computer in the proof of the four color theorem. Proceedings of the American Philosophical Society, 128(1), 35–39.Google Scholar
  3. Appel, K., & Haken, W. (1977a). Every planar map is four colorable. Part I: Discharging. Illinois Journal of Mathematics, 21(3), 429–490.Google Scholar
  4. Appel, K., & Haken, W. (1977b). The solution of the four-color-map problem. Scientific American, 237(4), 108–121.CrossRefGoogle Scholar
  5. Appel, K., & Haken, W. (1986). The four color proof suffices. The Mathematical Intelligencer, 8(1), 10–20.CrossRefGoogle Scholar
  6. Appel, K., Haken, W., & Koch, J. (1977). Every planar map is four colorable. Part II: Reducibility. Illinois Journal of Mathematics, 21(3), 491–567.Google Scholar
  7. Avigad, G. (2008). Computers in mathematical inquiry. In P. Mancosu (Ed.), The philosophy of mathematical practice (pp. 302–316). Oxford: Oxford University Press.CrossRefGoogle Scholar
  8. Bassler, O. B. (2006). The surveyability of mathematical proof: A historical perspective. Synthese, 148, 99–133.CrossRefGoogle Scholar
  9. Baker, A. (2016). Non-deductive methods in mathematics. Stanford Encyclopedia of Philosophy. URL http://plato.stanford.edu/entries/mathematics-nondeductive/. ISSN: 1095-5054
  10. Cifoletti, G. (2006). Mathematics and rhetoric. Introduction. Early Science and Medicine, 11(4), 369–389.CrossRefGoogle Scholar
  11. Detlefsen, M., & Luker, M. (1980). The four-color theorem and mathematical proof. The Journal of Philosophy, 77, 803–820.CrossRefGoogle Scholar
  12. Esquisabel, O. M. (2012). Representing and abstracting: an analysis of Leibniz’s concept of symbolic knowledge. In A. L. Cassanave (Ed.), Symbolic knowledge from Leibniz to Husserl: Studies in logic (Vol. 41, pp. 1–49). London: College Publications.Google Scholar
  13. Frascolla, P. (1994). Wittgenstein’s philosophy of mathematics. London/New York: Routledge.Google Scholar
  14. Fritsch, R. & Fritsch, G. (1998). The four-color theorem. Trad. Julie Peschke. New York/Heidelberg/Berlin: Springer.Google Scholar
  15. Gonthier, G. (2008). Formal proof: The four color theorem. Notices of the American Mathematical Society, 55(11), 1382–1393.Google Scholar
  16. Kreisel, G. (1977). From foundations to science: justifying and unwinding proofs. Recueil des travaux de 1’1nstitut Mathématique – Nouvelle serie (Symposium: Set theory. Foundations of Mathematics, Beograd, 29.08–2.09.1977). Tome 2 (10), pp. 63–72.Google Scholar
  17. Lassale Casanave, A. (2008). Entre la retórica y la dialectica. Manuscrito – Logic Language and Knowledge – Essays on Chateaubriand’s Logical Forms, 31(1), 11–18.Google Scholar
  18. Mackenzie, D. (2001). Mechanizing proof: Computer, risk and trust. Cambridge/London: The MIT Press.Google Scholar
  19. Mackenzie, D. (2005). Computing and the cultures of proving. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 363(1835), 2335–2350. The Nature of Mathematical Proof.CrossRefGoogle Scholar
  20. Mancosu, P. (2008). The philosophy of mathematical practice. Oxford: Oxford University Press.CrossRefGoogle Scholar
  21. Marion, M. (1998). Wittgenstein, finitism, and the foundations of mathematics. Oxford: Oxford University Press.Google Scholar
  22. Marion, M. (2011). Wittgenstein on the surveyability of proofs. In M. McGinn & O. Kuusela (Eds.), Oxford handbook of Wittgenstein (pp. 138–161). Oxford: Clarendon Press. ISBN 978–0–19–928750–5 1 3 5 7 9 10 8 6 4 2).Google Scholar
  23. McEvoy, M. (2008). The epistemological status of computer proofs. Philosophia Mathematica, 16, 374–387. (https://doi.org/10.1093/philmat/nkn014).CrossRefGoogle Scholar
  24. McEvoy, M. (2013). Experimental mathematics, computers and the a priori. Synthese, 190(3), 397–412. https://doi.org/10.1007/s11229-011-0035-1).CrossRefGoogle Scholar
  25. Mühlhölzer, F. (2006). A mathematical proof must be surveyable what Wittgenstein meant by this and what it implies. Grazer Philosophische Studien, 71, 57–86. doi:10.1163/18756735-071001006 ISSN: 0165-9227 E-ISSN: 1875–6735).CrossRefGoogle Scholar
  26. Prawitz, D. (2008). Proofs verifying programs and programs producing proofs. In R. Lupacchini & G. Corsi (Eds.), Deduction, computation, experiment: Exploring the effectiveness of proof (pp. 81–94). Berlin/Helderberg/New York: Springer.CrossRefGoogle Scholar
  27. Robertson, N., Sanders, D., Seymour, P., & Thomas, R. (1997). The four-color theorem. Journal of Combinatorial Theory, Series B, 70, 2–44.CrossRefGoogle Scholar
  28. Saaty, T., & Kainen, C. (1986). The four-color problem: Assaults and conquest. New York: Dover Publications.Google Scholar
  29. Secco, G. D. (2015). In a Wittgensteinian light. In H. Heusler, W. de Campos Sanz, & B. Lopes (Eds.), Why is this a proof? Festschrift for Luiz Carlos Pereira (pp. 45–53). London: College Publications.Google Scholar
  30. Shanker, S. (1987). Wittgenstein and the turning point in the philosophy of mathematics. London: Croom Helm.Google Scholar
  31. Steiner, M. (1996). Wittgenstein: mathematics, regularities, rules. In A. Morton & S. P. Stich (Eds.), Benacerraf and his critics (pp. 190–212). Oxford: Blackwell Publishing.Google Scholar
  32. Steiner, M. (2009). Empirical regularities in Wittgenstein’s philosophy of mathematics. Philosophia Mathematica (III), 17, 1–34.CrossRefGoogle Scholar
  33. Stewart, I. (1995). Concepts of modern mathematics. New York: Dover Publications. ISBN 0-486-28424-7).Google Scholar
  34. Stillwell, S. (1992). Empirical inquiry and proof. In M. Detlefsen (Ed.), Proof and knowledge in mathematics (pp. 110–134). New York: Routledge.Google Scholar
  35. Swart, E. R. (1980). The philosophical implications of the four-color problem. The American Mathematical Monthly, 87(9), 697–707.CrossRefGoogle Scholar
  36. Teller, P. (1980). Computer proof. The Journal of Philosophy, 77, 797–803.CrossRefGoogle Scholar
  37. Turner, R., & Eden, A. (2017). The philosophy of computer science. Stanford Encyclopedia of Philosophy. URL http://plato.stanford.edu/entries/computer-science/. ISSN: 1095–5054)
  38. Tymoczko, T. (1979). The four-color problem and its philosophical significance. The Journal of Philosophy, 27(2), 57–83.CrossRefGoogle Scholar
  39. Wang, H. (1981). Popular lectures on mathematical logic. New York: Dover Publications.Google Scholar
  40. Wilson, R. J. (2002). Four colours suffice: How the map problem was solved. London: Penguin Books.Google Scholar
  41. Wittgenstein, L. (1969). In G. E. M. Anscombe & G. H. Von Wright (Eds.), On certainty (D. Paul & G. E. M. Anscombe Trans.). New York: Harper Torchbooks.Google Scholar
  42. Wittgenstein, L. (1989). In R. G. Bosanquet, N. Malcolm, R. Rhees, Y. Smythies, & C. Diamond (Eds.), Wittgenstein’s lectures on the foundations of mathematics Cambridge 1939. Chicago: The University of Chicago Press.Google Scholar
  43. Wittgenstein, L. (2004). Tractatus logico-philosophicus (B. F. McGuiness & D. Pears, Trans.). Routledge, London.Google Scholar
  44. Wright, C. (1980). Wittgenstein on the foundations of mathematics. London: Duckworth.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Federal University of Rio Grande do SulPorto AlegreBrazil
  2. 2.Pontifical Catholic University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations