Skip to main content

Reconstruction of Thin-Slice Medical Images Using Generative Adversarial Network

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10541))

Included in the following conference series:


Slice thickness is a very important parameter for medical imaging such as magnetic resonance (MR) imaging or computed tomography (CT). Thinner slice imaging obviously provides higher spatial resolution and more diagnostic information, however also involves higher imaging cost both in time and expense. For the sake of efficiency, a relatively thick slice interval is usually used in the daily routine medical imaging. A novel generative adversarial network was proposed in this paper to reconstruct medical images with thinner slice thickness from regular thick slice images. A fully convolutional network with three-dimensional convolutional kernels and residual blocks was firstly applied to generate the slices between the imaging intervals. A novel perceptual loss function was proposed to guarantee both the pixel similarity and the spatial coherence in 3D. Moreover, a discriminator network with a sustained adversarial loss was utilized to push the solution to be more realistic. 43 pairs of MR images were used to validate the performance of the proposed method. The presented method is able to recover preoperative t2flair MR images with slice thickness of 2 mm from routine t2flair MR images with thickness of 6 mm. The reconstruction results on two datasets show the superiority of the presented method over other competitive image reconstruction methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. Klein, A., Andersson, J., Ardekani, B.A., Ashburner, J., Avants, B., Chiang, M., et al.: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage 46(3), 786–802 (2009)

    Article  Google Scholar 

  2. Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., et al.: Photo-realistic single image super-resolution using a generative adversarial network. arXiv:1609.04802 (2016)

Download references


This work was supported by the National Basic Research Program of China (2015CB755500), the National Natural Science Foundation of China (11474071).

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Yuanyuan Wang or Jinhua Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Li, Z., Wang, Y., Yu, J. (2017). Reconstruction of Thin-Slice Medical Images Using Generative Adversarial Network. In: Wang, Q., Shi, Y., Suk, HI., Suzuki, K. (eds) Machine Learning in Medical Imaging. MLMI 2017. Lecture Notes in Computer Science(), vol 10541. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67388-2

  • Online ISBN: 978-3-319-67389-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics