Localizing Cardiac Structures in Fetal Heart Ultrasound Video

  • Christopher P. Bridge
  • Christos Ioannou
  • J. Alison Noble
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10541)


Recently, a particle-filtering based framework was proposed to extract ‘global’ information from 2D ultrasound screening videos of the fetal heart, including the heart’s visibility, position, orientation, view classification and cardiac phase. In this paper, we consider how to augment that framework to describe the positions and visibility of important cardiac structures, including several valves and vessels, that are key to clinical diagnoses of congenital heart conditions in the developing heart. We propose a partitioned particle filtering architecture to address the problem of the high dimensionality of the resulting state space. The state space is partitioned into several sequential stages, which enables efficient use of a small number of particles. We present experimental results for tracking structures across several view planes in a real world clinical video dataset, and compare to expert annotations.

Supplementary material

Supplementary material 1 (mp4 10123 KB)


  1. 1.
    Baumgartner, C.F., Kamnitsas, K., Matthew, J., Fletcher, T.P., Smith, S., Koch, L.M., Kainz, B., Rueckert, D.: Real-time detection and localisation of fetal standard scan planes in 2D freehand ultrasound. arXiv abs/1612.05601 (2016). http://arxiv.org/abs/1612.05601
  2. 2.
    Bridge, C.P., Ioannou, C., Noble, J.A.: Automated annotation and quantitative description of ultrasound videos of the fetal heart. Med. Image Anal. 36, 147–161 (2017)CrossRefGoogle Scholar
  3. 3.
    Chen, H., Dou, Q., Ni, D., Cheng, J.-Z., Qin, J., Li, S., Heng, P.-A.: Automatic fetal ultrasound standard plane detection using knowledge transferred recurrent neural networks. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 507–514. Springer, Cham (2015). doi: 10.1007/978-3-319-24553-9_62 CrossRefGoogle Scholar
  4. 4.
    Liu, K., Skibbe, H., Schmidt, T., Blein, T., Palme, K., Brox, T., Ronneberger, O.: Rotation-invariant HOG descriptors using fourier analysis in polar and spherical coordinates. Int. J. Comput. Vis. 106(3), 342–364 (2014)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    MacCormick, J., Isard, M.: Partitioned sampling, articulated objects, and interface-quality hand tracking. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 3–19. Springer, Heidelberg (2000). doi: 10.1007/3-540-45053-X_1 CrossRefGoogle Scholar
  6. 6.
    Pézard, P., et al.: Influence of ultrasonographers’ training on prenatal diagnosis of congenital heart diseases: a 12-year population-based study. Prenat. Diagn. 28(11), 1016–1022 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Christopher P. Bridge
    • 1
  • Christos Ioannou
    • 2
  • J. Alison Noble
    • 1
  1. 1.Institute of Biomedical EngineeringUniversity of OxfordOxfordUK
  2. 2.Fetal Medicine UnitJohn Radcliffe HospitalOxfordUK

Personalised recommendations