Skip to main content

From Large to Small Organ Segmentation in CT Using Regional Context

  • Conference paper
  • First Online:
Book cover Machine Learning in Medical Imaging (MLMI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10541))

Included in the following conference series:

Abstract

The segmentation of larger organs in CT is a well studied problem. For lungs and liver, state of the art methods reach Dice Scores above 0.9. However, these methods are not as reliable on smaller organs such as pancreas, thyroid, adrenal glands and gallbladder, even though a good segmentation of these organs is needed for example for radiotherapy planning.

In this work, we present a new method for the segmentation of such small organs that does not require any deformable registration to be performed. We encode regional context in the form of anatomical context and shape features. These are used within an iterative procedure where, after an initial labelling of all organs using local context only, the segmentation of small organs is refined using regional context. Finally, the segmentations are regularised by shape voting. On the Visceral Challenge 2015 dataset, our method yields a substantially higher sensitivity and Dice score than other forest-based methods for all organs. By using only affine registrations, it is also computationally highly efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bieth, M., Donner, R., Langs, G., et al.: Anatomical triangulation: from sparse landmarks to dense annotation of the skeleton in CT images. In: Proceedings of BMVC, pp. 84.1–84.10 (2015)

    Google Scholar 

  2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  3. Calonder, M., Lepetit, V., Ozuysal, M., et al.: BRIEF: computing a local binary descriptor very fast. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1281–1298 (2012)

    Article  Google Scholar 

  4. Criminisi, A., Shotton, J., Bucciarelli, S.: Decision forests with long-range spatial context for organ localization in CT volumes. In: MICCAI, pp. 69–80. Citeseer (2009)

    Google Scholar 

  5. Göksel, O., Jiménez-del Toro, O.A., Foncubierta-Rodríguez, A., Müller, H.: Overview of the VISCERAL challenge at ISBI 2015. In: Proceedings of the VISCERAL Anatomy Grand Challenge at ISBI (2015)

    Google Scholar 

  6. Heinrich, M.P., Blendowski, M.: Multi-organ segmentation using vantage point forests and binary context features. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 598–606. Springer, Cham (2016). doi:10.1007/978-3-319-46723-8_69

    Chapter  Google Scholar 

  7. Hu, P., Wu, F., Peng, J., et al.: Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets. Int. J. Comput. Assist. Radiol. Surg., 1–13 (2016)

    Google Scholar 

  8. Li, Y., Ho, C.P., Chahal, N., Senior, R., Tang, M.-X.: Myocardial segmentation of contrast echocardiograms using random forests guided by shape model. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 158–165. Springer, Cham (2016). doi:10.1007/978-3-319-46726-9_19

    Chapter  Google Scholar 

  9. Okada, T., Linguraru, M.G., Hori, M., et al.: Abdominal multi-organ segmentation from CT images using conditional shape-location and unsupervised intensity priors. Med. Image Anal. 26(1), 1–18 (2015)

    Article  Google Scholar 

  10. Peter, L., Pauly, O., Chatelain, P., Mateus, D., Navab, N.: Scale-adaptive forest training via an efficient feature sampling scheme. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 637–644. Springer, Cham (2015). doi:10.1007/978-3-319-24553-9_78

    Chapter  Google Scholar 

  11. Richmond, D., Kainmueller, D., Glocker, B., Rother, C., Myers, G.: Uncertainty-driven forest predictors for vertebra localization and segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 653–660. Springer, Cham (2015). doi:10.1007/978-3-319-24553-9_80

    Chapter  Google Scholar 

  12. Roth, H.R., Lu, L., Farag, A., Shin, H.-C., Liu, J., Turkbey, E.B., Summers, R.M.: DeepOrgan: multi-level deep convolutional networks for automated pancreas segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 556–564. Springer, Cham (2015). doi:10.1007/978-3-319-24553-9_68

    Chapter  Google Scholar 

  13. del Toro, O.A.J., Müller, H.: Hierarchical multi-structure segmentation guided by anatomical correlations. In: Proceedings of the VISCERAL Challenge at ISBI, pp. 32–36. Citeseer (2014)

    Google Scholar 

  14. Tu, Z.: Auto-context and its application to high-level vision tasks. In: CVPR, pp. 1–8. IEEE (2008)

    Google Scholar 

  15. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: CVPR, vol. 1, p. I-511, IEEE (2001)

    Google Scholar 

  16. Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in general metric spaces. In: SODA, vol. 93, pp. 311–321 (1993)

    Google Scholar 

  17. Zikic, D., Glocker, B., Criminisi, A.: Atlas encoding by randomized forests for efficient label propagation. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8151, pp. 66–73. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40760-4_9

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the German ministry for education and research (Bundesministerium für Bildung und Forschung) under Grant Agreement No. 01IS12057.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Bieth .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 965 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bieth, M., Alberts, E., Schwaiger, M., Menze, B. (2017). From Large to Small Organ Segmentation in CT Using Regional Context. In: Wang, Q., Shi, Y., Suk, HI., Suzuki, K. (eds) Machine Learning in Medical Imaging. MLMI 2017. Lecture Notes in Computer Science(), vol 10541. Springer, Cham. https://doi.org/10.1007/978-3-319-67389-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67389-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67388-2

  • Online ISBN: 978-3-319-67389-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics