Skip to main content

Leveraging Omics Biomarker Data in Drug Development: With a GWAS Case Study

  • Conference paper
  • First Online:
Pharmaceutical Statistics (MBSW 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 218))

Included in the following conference series:

  • 902 Accesses

Abstract

Biomarkers have proven powerful for target identification, understanding disease progression, drug safety and treatment responses in drug development. Recent development of omics technology has offered great opportunities for identifications of omics biomarkers at low cost. Although biomarkers have brought many promises to drug development, steep challenges arise due to high dimensionality of data, complexity of technology and lack of full understanding of biology. In this article, the application of omics data in drug development will be reviewed. A genome wide association study (GWAS) will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. 57(1), 289–300 (1995)

    MathSciNet  MATH  Google Scholar 

  2. Biomarkers Definition Working Group Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin Pharmacol Therapeutics. 69, 89–95 (2001)

    Article  Google Scholar 

  3. Collins, F.S., Varmus, H.: A new initiative on precision medicine. N. Engl. J. Med. 372(9), 793–795 (2015)

    Article  Google Scholar 

  4. Conover, W.J.: Practical Nonparametric Statistics. John Wiley Chichester, New York (1999)

    Google Scholar 

  5. Fadista, J., Manning, A., Florez, J., Groop, L.: The (in)famous GWAS P-value threshold revisited and updated for low-frequency variants. Eur. J. Hum. Genet. 24, 1202–1205 (2016)

    Article  Google Scholar 

  6. Fleming, T.R., DeMets, D.L.: Surrogate end points in clinical trials: are we being misled? Ann. Intern. Med. 125(7), 605–613 (1996)

    Article  Google Scholar 

  7. Gosho, M., Nagashima, K., Sato, Y.: Study designs and statistical analyses for biomarker research. Sensors 12, 8966–8986 (2012)

    Article  Google Scholar 

  8. Johnstone, I., Titterington, D.: Statistical challenges of high-dimensional data. Phil. Trans. R. Soc. A 367, 4237–4253 (2009)

    Article  MathSciNet  Google Scholar 

  9. Kang, H.M., Zaitlen, N.A., Wade, C.M., Kirby, A., Heckerman, D., et al.: Efficient control of population structure in model organism association mapping. Genetics 178, 1709–1723 (2008)

    Article  Google Scholar 

  10. Katz, R.: Biomarkers and Surrogate Markers: an FDA Perspective. NeuroRx 1(2), 189–195 (2004)

    Article  MathSciNet  Google Scholar 

  11. Knijnenburg, T.A., Wessels, L.F., Reinders, M.J., Shmulevich, I.: Fewer permutations, more accurate P-values. Bioinformatics 25, i161–i168 (2009)

    Article  Google Scholar 

  12. Meienberg, J., Bruggmann, R., Oexle, K., Matyas, G.: Clinical sequencing: is WGS the better WES? Hum. Genet. 135, 359–362 (2016)

    Article  Google Scholar 

  13. Morgan, P., Van Der Graaf, P.H., Arrowsmith, J., Feltner, D.E., Drummond, K.S., Wegner, C.D., Street, S.D.: Can the flow of medicines be improved? Fundamental pharmacokinetic and pharmacological principles toward improving Phase II survival. Drug. Discov. Today 17, 419–424 (2012)

    Article  Google Scholar 

  14. Paik, S., Shak, S., Tang, G., Kim, C., Baker, J., Cronin, M., et al.: A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351(27), 2817–2826 (2004)

    Article  Google Scholar 

  15. Panagiotou, O.A., Ioannidis, J.P.: Genome-wide significance project. What should the genome-wide significance threshold be? Empirical replication of borderline genetic associations. Int. J. Epidemiol. 41(1), 273–86 (2012)

    Article  Google Scholar 

  16. Pe’er, I., Yelensky, R., Altshuler, D., Daly, M.: Estimation of the multiple testing burden for Genomewide association studies of nearly all common variants. Genet. Epidemiol. 32, 381–385 (2008)

    Article  Google Scholar 

  17. Shyr, D., Liu, Q.: Next generation sequencing in cancer research and clinical application. Biol. Proced. Online 15, 4 (2013)

    Article  Google Scholar 

  18. Storey, J.D.: A direct approach to false discovery rates. J. Roy. Stat. Soc. 64, 479–498 (2002)

    Article  MathSciNet  Google Scholar 

  19. TESARO’s Niraparib Significantly Improved Progression-Free Survival for Patients With Ovarian Cancer in Both Cohorts of the Phase 3 NOVA Trial (2016). http://ir.tesarobio.com/releasedetail.cfm?releaseid=977524

  20. Thomas, D.W., Burns, J., Audette, J., Carroll, A., Dow-Hygelund, C., Hay, M.: Clinical Development Success Rates 2006–2015. June 2016. https://www.bio.org/sites/default/files/Clinical%20Development%20Success%20Rates%202006-2015%20-%20BIO,%20Biomedtracker,%20Amplion%202016.pdf

  21. Valdar, W., Holmes, C.C., Mott, R., Flint, J.: Mapping in structured populations by resample model averaging. Genetics 182, 1263–1277 (2009)

    Article  Google Scholar 

  22. Wetterstrand, K.A.: DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP) (2016). www.genome.gov/sequencingcostsdata. Accessed 23 Dec 2016

  23. Zhang, W., Korstanje, R., Thaisz, J., Staedtler, F., Harttman, N., Xu, L., Feng, M., Yanas, L., Yang, H., Valdar, W., Churchill, G.A., DiPetrillo, K.: Genome-wide association mapping of quantitative traits in outbred mice. G3: Genes Genomes Genet. 2(2), 167–174 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Pfizer, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, W. (2019). Leveraging Omics Biomarker Data in Drug Development: With a GWAS Case Study. In: Liu, R., Tsong, Y. (eds) Pharmaceutical Statistics. MBSW 2016. Springer Proceedings in Mathematics & Statistics, vol 218. Springer, Cham. https://doi.org/10.1007/978-3-319-67386-8_22

Download citation

Publish with us

Policies and ethics